Biodiversity and core microbiota of key-stone ecological clusters regulate compost maturity during cow-dung-driven composting

The primary objectives of this study were to explore the community-level succession of bacteria, fungi, and protists during cow-dung-driven composting and to elucidate the contribution of the biodiversity and core microbiota of key-stone microbial clusters on compost maturity. Herein, we used high-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2024-03, Vol.245, p.118034-118034, Article 118034
Hauptverfasser: Liu, Xin, Rong, Xiangmin, Jiang, Pan, Yang, Junyan, Li, Han, Yang, Yong, Deng, Xingxiang, Xie, Guixian, Luo, Gongwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary objectives of this study were to explore the community-level succession of bacteria, fungi, and protists during cow-dung-driven composting and to elucidate the contribution of the biodiversity and core microbiota of key-stone microbial clusters on compost maturity. Herein, we used high-throughput sequencing, polytrophic ecological networks, and statistical models to visualize our hypothesis. The results showed significant differences in the richness, phylogenetic diversity, and community composition of bacteria, fungi, and eukaryotes at different composting stages. The ASV191 (Sphingobacterium), ASV2243 (Galibacter), ASV206 (Galibacter), and ASV62 (Firmicutes) were the core microbiota of key-stone bacterial clusters relating to compost maturity; And the ASV356 (Chytridiomycota), ASV470 (Basidiomycota), and ASV299 (Ciliophora) were the core microbiota of key-stone eukaryotic clusters relating to compost maturity based on the data of this study. Compared with the fungal taxa, the biodiversity and core microbiota of key-stone bacterial and eukaryotic clusters contributed more to compost maturity and could largely predict the change in the compost maturity. Structural equation modeling revealed that the biodiversity of total microbial communities and the biodiversity and core microbiota of the key-stone microbial clusters in the compost directly and indirectly regulated compost maturity by influencing nutrient availability (e.g., NH4+-N and NO3−-N), hemicellulose, humic acid content, and fulvic acid content, respectively. These results contribute to our understanding of the biodiversity and core microbiota of key-stone microbial clusters in compost to improve the performance and efficiency of cow-dung-driven composting. [Display omitted] •Diversity of fungi, bacteria, and eukaryotes changed notably with composting process.•Diversity and core taxa of key bacteria and eukaryotes could predict compost maturity.•Bacteroidetes and Firmicutes taxa were key bacterial taxa relating to compost maturity.•Basidiomycota and Ciliophora taxa were key eukaryotic taxa relating to compost maturity.•Succession of compost microbes was expected to predict compost efficiency and quality.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2023.118034