System Optimisation Of Multi-Beam Aperture Synthesis Arrays For Survey Performance

Investigating the requirements for an aperture synthesis array that optimise the performance for surveying shows that, next to collecting area and system temperature, the field-of-view (FoV) is key parameter. However, the effective sensitivity not only depends on bandwidth and integration time but c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental astronomy 2004-06, Vol.17 (1-3), p.365-380
1. Verfasser: Bregman, Jaap D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Investigating the requirements for an aperture synthesis array that optimise the performance for surveying shows that, next to collecting area and system temperature, the field-of-view (FoV) is key parameter. However, the effective sensitivity not only depends on bandwidth and integration time but could be seriously limited by side lobe confusion and by gain errors that determine the effective dynamic range. From the basic sensitivity equation for a radiometric system we derive an optimum cost ratio between collecting area and processing electronics, where the latter should be less than a third of the total cost. For an instrument that has to cover a fraction of sky larger than its field-of-view, the FoV enters the equation for survey sensitivity and we identify the number of independent feed systems per unit collecting area as a key parameter. Then the optimum cost distribution allows the electronics to account for up to half the total cost. Further analysis of the sensitivity formula shows that there is an optimum design frequency for a survey instrument below 1 GHz. We discuss the impact of station size and array configuration on self-calibration, side lobe confusion and effective sensitivity and conclude that a minimum station size of 20 m diameter is required at 0.3 GHz as long as multi-patch self-calibration procedures need, per baseline, a signal-to-noise ratio of more than two for each ionospheric coherence patch.
ISSN:0922-6435
1572-9508
DOI:10.1007/s10686-005-2872-8