Stability analysis and observer design for neutral delay systems
This paper deals with the observer design problem for a class of linear delay systems of the neutral-type. The problem addressed is that of designing a full-order observer that guarantees the exponential stability of the error dynamic system. An effective algebraic matrix equation approach is develo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2002-03, Vol.47 (3), p.478-483 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the observer design problem for a class of linear delay systems of the neutral-type. The problem addressed is that of designing a full-order observer that guarantees the exponential stability of the error dynamic system. An effective algebraic matrix equation approach is developed to solve this problem. In particular, both the observer analysis and design problems are investigated. By using the singular value decomposition technique and the generalized inverse theory, sufficient conditions for a neutral-type delay system to be exponentially stable are first established. Then, an explicit expression of the desired observers is derived in terms of some free parameters. Furthermore, an illustrative example is used to demonstrate the validity of the proposed design procedure. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/9.989144 |