Baicalin-peptide supramolecular self-assembled nanofibers effectively inhibit ferroptosis and attenuate doxorubicin-induced cardiotoxicity
Doxorubicin, an anthracycline chemotherapeutic agent, elicits a deleterious cardiotoxicity known as doxorubicin-induced cardiomyopathy (DIC) that circumscribes its chemotherapy utility for malignancies. Recent empirical evidence implicates ferroptosis, an iron-dependent form of regulated cell death,...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2024-02, Vol.366, p.838-848 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doxorubicin, an anthracycline chemotherapeutic agent, elicits a deleterious cardiotoxicity known as doxorubicin-induced cardiomyopathy (DIC) that circumscribes its chemotherapy utility for malignancies. Recent empirical evidence implicates ferroptosis, an iron-dependent form of regulated cell death, as playing a pivotal role in the pathogenesis of DIC. We postulated that anti-ferroptosis agents may constitute a novel therapeutic strategy for mitigating DIC. To test this hypothesis, we engineered baicalin-peptide supramolecular self-assembled nanofibers designed to selectively target the angiotensin II type I receptor (AT1R), which is upregulated in doxorubicin-damaged cardiomyocytes. This enabled targeted delivery of baicalin, a natural antioxidant compound, to inhibit ferroptosis in the afflicted myocardium. In vitro, the nanofibers ameliorated cardiomyocyte death by attenuating peroxide accumulation and suppressing ferroptosis. In a murine model of DIC, AT1R-targeted baicalin delivery resulted in efficacious cardiac accumulation and superior therapeutic effects compared to systemic administration. This investigation delineates a promising framework for developing targeted therapies that alleviate doxorubicin-induced cardiotoxicity by inhibiting the ferroptosis pathway in cardiomyocytes.
[Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2023.12.034 |