Machine-learning prediction of treatment response to stereotactic body radiation therapy in oligometastatic gynecological cancer: A multi-institutional study

•Patients with CR have significant increase of local control and overall survival.•No predictive models for CR following SBRT for gynecological oligometastatic cancer.•Machine-learning models may help to predict CR of uterine metastasis.•Machine-learning models enable personalized risk-stratificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiotherapy and oncology 2024-02, Vol.191, p.110072, Article 110072
Hauptverfasser: Cilla, Savino, Campitelli, Maura, Antonietta Gambacorta, Maria, Michela Rinaldi, Raffaella, Deodato, Francesco, Pezzulla, Donato, Romano, Carmela, Fodor, Andrei, Laliscia, Concetta, Trippa, Fabio, De Sanctis, Vitaliana, Ippolito, Edy, Ferioli, Martina, Titone, Francesca, Russo, Donatella, Balcet, Vittoria, Vicenzi, Lisa, Di Cataldo, Vanessa, Raguso, Arcangela, Giuseppe Morganti, Alessio, Ferrandina, Gabriella, Macchia, Gabriella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Patients with CR have significant increase of local control and overall survival.•No predictive models for CR following SBRT for gynecological oligometastatic cancer.•Machine-learning models may help to predict CR of uterine metastasis.•Machine-learning models enable personalized risk-stratification in SBRT. We aimed to develop and validate different machine-learning (ML) prediction models for the complete response of oligometastatic gynecological cancer after SBRT. One hundred fifty-seven patients with 272 lesions from 14 different institutions and treated with SBRT with radical intent were included. Thirteen datasets including 222 lesions were combined for model training and internal validation purposes, with an 80:20 ratio. The external testing dataset was selected as the fourteenth Institution with 50 lesions. Lesions that achieved complete response (CR) were defined as responders. Prognostic clinical and dosimetric variables were selected using the LASSO algorithm. Six supervised ML models, including logistic regression (LR), classification and regression tree analysis (CART) and support vector machine (SVM) using four different kernels, were trained and tested to predict the complete response of uterine lesions after SBRT. The performance of models was assessed by receiver operating characteristic curves (ROC), area under the curve (AUC) and calibration curves. An explainable approach based on SHapley Additive exPlanations (SHAP) method was deployed to generate individual explanations of the model's decisions. 63.6% of lesions had a complete response and were used as ground truth for the supervised models. LASSO strongly associated complete response with three variables, namely the lesion volume (PTV), the type of lesions (lymph-nodal versus parenchymal), and the biological effective dose (BED10), that were used as input for ML modeling. In the training set, the AUCs for complete response were 0.751 (95% CI: 0.716–0.786), 0.766 (95% CI: 0.729–0.802) and 0.800 (95% CI: 0.742–0.857) for the LR, CART and SVM with a radial basis function kernel, respectively. These models achieve AUC values of 0.727 (95% CI: 0.669–0.795), 0.734 (95% CI: 0.649–0.815) and 0.771 (95% CI: 0.717–0.824) in the external testing set, demonstrating excellent generalizability. ML models enable a reliable prediction of the treatment response of oligometastatic lesions receiving SBRT. This approach may assist radiation oncologists to tailor more individualized treatment plans for o
ISSN:0167-8140
1879-0887
1879-0887
DOI:10.1016/j.radonc.2023.110072