Synthesis of new versatile functionalized polyesters for biomedical applications

A new family of branched polymers was synthesized for different biomedical applications such as the preparation of targeted nanoparticulate drug carriers. They are new copolymers of hydroxy-acids and allyl glycidyl ether. The functional groups (allyl-, hydroxyl- and carboxyl-) to which various group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2005-11, Vol.46 (25), p.11263-11272
Hauptverfasser: Nadeau, Véronique, Leclair, Grégoire, Sant, Shilpa, Rabanel, Jean-Michel, Quesnel, Richard, Hildgen, Patrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new family of branched polymers was synthesized for different biomedical applications such as the preparation of targeted nanoparticulate drug carriers. They are new copolymers of hydroxy-acids and allyl glycidyl ether. The functional groups (allyl-, hydroxyl- and carboxyl-) to which various groups will be grafted are linked to the polymer backbone. The resulting polymers were characterized by 1H NMR, 13C NMR, size exclusion chromatography (SEC), elemental analysis and differential scanning calorimetry (DSC). In vitro cytotoxicity assays were also conducted to ensure biocompatibility of the polymers. In order to obtain some structural evidences, different molecules have been grafted on the pendant groups. The method allows a rapid and easy synthesis of allyl-, hydroxyl- and carboxyl-branched degradable polymers for grafting various bioactive molecules.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2005.09.079