Automated Prognosis Marker Assessment in Breast Cancers Using BLEACH&STAIN Multiplexed Immunohistochemistry
Prognostic markers in routine clinical management of breast cancer are often assessed using RNA-based multi-gene panels that depend on fluctuating tumor purity. Multiplex fluorescence immunohistochemistry (mfIHC) holds the potential for an improved risk assessment. To enable automated prognosis mark...
Gespeichert in:
Veröffentlicht in: | Biomedicines 2023-11, Vol.11 (12), p.3175 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prognostic markers in routine clinical management of breast cancer are often assessed using RNA-based multi-gene panels that depend on fluctuating tumor purity. Multiplex fluorescence immunohistochemistry (mfIHC) holds the potential for an improved risk assessment. To enable automated prognosis marker detection (i.e., progesterone receptor [PR], estrogen receptor [ER], androgen receptor [AR], GATA3, TROP2, HER2, PD-L1, Ki67, TOP2A), a framework for automated breast cancer identification was developed and validated involving thirteen different artificial intelligence analysis steps and an algorithm for cell distance analysis using 11+1-marker-BLEACH&STAIN-mfIHC staining in 1404 invasive breast cancers of no special type (NST). The framework for automated breast cancer detection discriminated normal glands from malignant glands with an accuracy of 98.4%. This approach identified that five (PR, ER, AR, GATA3, PD-L1) of nine biomarkers were associated with prolonged overall survival (
≤ 0.0095 each) and two of these (PR, AR) were found to be independent risk factors in multivariate analysis (
≤ 0.0151 each). The combined assessment of PR-ER-AR-GATA3-PD-L1 as a five-marker prognosis score showed strong prognostic relevance (
< 0.0001) and was an independent risk factor in multivariate analysis (
= 0.0034). Automated breast cancer detection in combination with an artificial intelligence-based analysis of mfIHC enables a rapid and reliable analysis of multiple prognostic parameters. The strict limitation of the analysis to malignant cells excludes the impact of fluctuating tumor purity on assay precision. |
---|---|
ISSN: | 2227-9059 2227-9059 |
DOI: | 10.3390/biomedicines11123175 |