Quantitative subcellular reconstruction reveals a lipid mediated inter-organelle biogenesis network

The structures and functions of organelles in cells depend on each other but have not been systematically explored. We established stable knockout cell lines of peroxisomal, Golgi and endoplasmic reticulum genes identified in a whole-genome CRISPR knockout screen for inducers of mitochondrial biogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2024-01, Vol.26 (1), p.57-71
Hauptverfasser: Lee, Richard G., Rudler, Danielle L., Raven, Samuel A., Peng, Liuyu, Chopin, Anaëlle, Moh, Edward S. X., McCubbin, Tim, Siira, Stefan J., Fagan, Samuel V., DeBono, Nicholas J., Stentenbach, Maike, Browne, Jasmin, Rackham, Filip F., Li, Ji, Simpson, Kaylene J., Marcellin, Esteban, Packer, Nicolle H., Reid, Gavin E., Padman, Benjamin S., Rackham, Oliver, Filipovska, Aleksandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structures and functions of organelles in cells depend on each other but have not been systematically explored. We established stable knockout cell lines of peroxisomal, Golgi and endoplasmic reticulum genes identified in a whole-genome CRISPR knockout screen for inducers of mitochondrial biogenesis stress, showing that defects in peroxisome, Golgi and endoplasmic reticulum metabolism disrupt mitochondrial structure and function. Our quantitative total-organelle profiling approach for focussed ion beam scanning electron microscopy revealed in unprecedented detail that specific organelle dysfunctions precipitate multi-organelle biogenesis defects, impair mitochondrial morphology and reduce respiration. Multi-omics profiling showed a unified proteome response and global shifts in lipid and glycoprotein homeostasis that are elicited when organelle biogenesis is compromised, and that the resulting mitochondrial dysfunction can be rescued with precursors for ether-glycerophospholipid metabolic pathways. This work defines metabolic and morphological interactions between organelles and how their perturbation can cause disease. Lee et al. use three-dimensional cell reconstruction of focused ion beam scanning electron microscopy data and multi-omics to show that ether-lipid metabolism regulates inter-organelle biogenesis and dynamics.
ISSN:1465-7392
1476-4679
DOI:10.1038/s41556-023-01297-4