Tension-Induced Localized Wrinkling in a Patched Thin Film Supported by an Elastomer
The wrinkling behavior of thin films has received great attention for their applications in developing various wrinkle-based novel technologies. Herein, a new wrinkling system: tension-induced wrinkling in an elastomer-supported patched thin film (TW-P&SF) is investigated by using PDMS-supported...
Gespeichert in:
Veröffentlicht in: | Langmuir 2024-01, Vol.40 (1), p.133-140 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The wrinkling behavior of thin films has received great attention for their applications in developing various wrinkle-based novel technologies. Herein, a new wrinkling system: tension-induced wrinkling in an elastomer-supported patched thin film (TW-P&SF) is investigated by using PDMS-supported patched polyimide thin films with different thicknesses and varied length/width ratios. Different from the well-studied compression-induced wrinkling in an elastomer-supported thin film (CW-SF) and tension-induced wrinkling in an edge-clamped free-standing thin film (TW-FF), in the system of TW-P&SF, the wrinkles are localized near the edge of the film with a finite length that follows a center-symmetric distribution. It was found that the wrinkle length l max and the wrinkle period λ scale with the film thickness h as λ ∼ h 0.86 and l max ∼ h –0.79. With the assistance of the two-dimensional shear lag model and scaling analysis, the underlying mechanism for wrinkle localization is clarified. Furthermore, the promise of the TW-P&SF-enabled wrinkle-based method as a new method for thin film mechanical characterization is demonstrated. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c02282 |