Upregulated LncRNA-Meg3 modulates the proliferation and survival of MEPM cells via interacting with Smad signaling in TCDD-induced cleft palate
Exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in high rates of cleft palate (CP) formation, yet the underlying mechanisms remain to be characterized. In vivo, the lncRNA Meg3 was upregulated following TCDD treatment in CP-associated murine e...
Gespeichert in:
Veröffentlicht in: | Food and chemical toxicology 2024-03, Vol.185, p.114410, Article 114410 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in high rates of cleft palate (CP) formation, yet the underlying mechanisms remain to be characterized. In vivo, the lncRNA Meg3 was upregulated following TCDD treatment in CP-associated murine embryonic palatal tissue, with concomitant changes in proliferative and apoptotic activity in these murine embryonic palatal mesenchymal (MEPM) cells. Meg3 can modulate the TGF-β/Smad to control the proliferation, survival, and differentiation of cells. Accordingly, TCCD and TGF-β1 were herein used to treat MEPM cells in vitro, revealing that while TCDD exposure altered the proliferative activity and apoptotic death of these cells, exogenous TGF-β1 exposure antagonized these effects via TGF-β/Smad signaling. TCDD promoted Meg3 upregulation, whereas TGF-β1 suppressed TCDD-driven upregulation of this lncRNA. Meg3 was additionally determined to directly interact with Smad2, with significant Meg3 enrichment in Smad2-immunoprecipitates following TCDD treatment. When Meg3 was silenced, the impact of TCDD on Smad signaling, proliferative activity, and apoptosis were ablated, while the effects of exogenous TGF-β1 were unchanged. This supports a model wherein Meg3 is upregulated in TCDD-exposed palatal tissue whereupon it can interact with Smad2 to suppress Smad-dependent signaling, thus controlling MEPM cell proliferation and apoptosis, contributing to TCDD-induced CP, which provides a theoretical support for the precautions of cleft palate induced by TCDD.
•LncRNA- Meg3 gene was upregulated by TCDD in mouse embryo palate cells.•The MEPM cell cellular proliferation and apoptosis were regulated by TCDD and TGF-β1.•The Smad-dependent signaling was inhibited by TCDD in MEPM cells•The effects of TCDD on the MEPM cells and Smad signaling were abolished after Meg3 deletion.•Meg3 mediated Smad signaling and thereby regulated the TCDD effects on MEPM cells. |
---|---|
ISSN: | 0278-6915 1873-6351 1873-6351 |
DOI: | 10.1016/j.fct.2023.114410 |