Microplastics and other anthropogenic fibres in large apex shark species: Abundance, characteristics, and recommendations for future research
Microplastics and microfibres are found ubiquitously in global oceans as well as marine organisms from different trophic levels. However, little is known about the presence of microplastics and microfibres in marine megafauna, such as sharks. This study provided the first investigation of the presen...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2024-02, Vol.349, p.140957-140957, Article 140957 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microplastics and microfibres are found ubiquitously in global oceans as well as marine organisms from different trophic levels. However, little is known about the presence of microplastics and microfibres in marine megafauna, such as sharks. This study provided the first investigation of the presence of microplastics and other anthropogenic fibres (i.e., cellulose based fibres) in intestine and muscle samples of four large apex shark species in Australian coastal waters. Microplastics and other anthropogenic fibres were found in 82% of the analysed intestine samples. The mean abundance in intestine samples was 3.1 ± 2.6 particles/individual, which corresponded to 0.03 ± 0.02 particles/g of intestine, across all shark species. The size of particles ranged from 190 to 4860 μm in length with 92% being fibrous in shape and the rest fragments. FTIR spectroscopy identified that 70% of fibres were cellulose-based followed by polyethylene terephthalate (PET), while the fragments were polyethylene and polypropylene. In shark muscles, 60% of samples contained microplastics and other anthropogenic fibres, again with the majority being cellulose-based fibres followed by PET fibres. Methodological differences hinder a more comprehensive assessment of microplastic contamination across studies. Additionally, we identified some challenges which should be factored in for future studies looking at the presence of microplastics as well as other anthropogenic fibres in these large marine organisms. Overall, the findings provide first evidence of microplastics and other anthropogenic fibres not only in the intestines, but also in muscle tissues of large apex shark species.
[Display omitted]
•Microplastics and other anthropogenic fibres were found in four apex shark species.•Fibres were predominantly found in both intestine and muscle samples.•Cellulose-based fibres accounted for 61–82% of all fibres detected.•PET plastic fibres accounted for the majority of plastic fibres.•Challenges in methodologies and cross-study comparison were identified. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2023.140957 |