Electrospun Tamarindus indica-loaded antimicrobial PMMA/cellulose acetate/PEO nanofibrous scaffolds for accelerated wound healing: In-vitro and in-vivo assessments
In this work, Tamarindus indica (T. indica)-loaded crosslinked poly(methyl methacrylate) (PMMA)/cellulose acetate (CA)/poly(ethylene oxide) (PEO) electrospun nanofibers were designed and fabricated for wound healing applications. T. indica is a plant extract that possesses antidiabetic, antimicrobia...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-02, Vol.258, p.128793-128793, Article 128793 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, Tamarindus indica (T. indica)-loaded crosslinked poly(methyl methacrylate) (PMMA)/cellulose acetate (CA)/poly(ethylene oxide) (PEO) electrospun nanofibers were designed and fabricated for wound healing applications. T. indica is a plant extract that possesses antidiabetic, antimicrobial, antioxidant, antimalarial and wound healing properties. T. indica leaves extract of different concentrations were blended with a tuned composition of a matrix comprised of PMMA (10 %), CA (2 %) and PEO (1.5 %), and were electrospun to form smooth, dense and continuous nanofibers as illustrated by SEM investigation. In vitro evaluation of T. indica-loaded nanofibers on normal human skin fibroblasts (HBF4) revealed a high compatibility and low cytotoxicity. T. indica-loaded nanofibers significantly increased the healing activity of scratched HBF4 cells, as compared to the free plant extract, and the healing activity was significantly enhanced upon increasing the plant extract concentration. Moreover, T. indica-loaded nanofibers demonstrated significant antimicrobial activity in vitro against the tested microbes. In vivo, nanofibers resulted in a superior wound healing efficiency compared to the control untreated animals. Hence, engineered nanofibers loaded with potent phytochemicals could be exploited as an effective biocompatible and eco-friendly antimicrobial biomaterials and wound healing composites.
(Created by BioRender.Com) [Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.128793 |