Optimizing cryo-EM structural analysis of Gi-coupling receptors via engineered Gt and Nb35 application
Cryo-EM single particle analysis has recently facilitated the high-resolution structural determination of numerous GPCR-G complexes. Diverse methodologies have been devised with this trend, and in the case of GPCR-Gi complexes, scFv16, an antibody that recognizes the intricate interface of the compl...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2024-01, Vol.693, p.149361, Article 149361 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cryo-EM single particle analysis has recently facilitated the high-resolution structural determination of numerous GPCR-G complexes. Diverse methodologies have been devised with this trend, and in the case of GPCR-Gi complexes, scFv16, an antibody that recognizes the intricate interface of the complex, has been mainly implemented to stabilize the complex. However, owing to their flexibility and heterogeneity, structural determinations of GPCR-Gi complexes remain both challenging and resource-intensive. By employing eGαt, which exhibits binding affinity to modified nanobody Nb35, the cryo-EM structure of Rhodopsin-eGαt complex was previously reported. Using this modified G protein, we determined the structure of the ETB-eGt complex bound to the modified Nb35. The determined structure of ETB receptor was the same as the previously reported ETB-Gi complex, and the resulting dataset demonstrated significantly improved anisotropy. This modified G protein will be utilized for the structural determination of other GPCR-Gi complexes.Cryo-EM single particle analysis has recently facilitated the high-resolution structural determination of numerous GPCR-G complexes. Diverse methodologies have been devised with this trend, and in the case of GPCR-Gi complexes, scFv16, an antibody that recognizes the intricate interface of the complex, has been mainly implemented to stabilize the complex. However, owing to their flexibility and heterogeneity, structural determinations of GPCR-Gi complexes remain both challenging and resource-intensive. By employing eGαt, which exhibits binding affinity to modified nanobody Nb35, the cryo-EM structure of Rhodopsin-eGαt complex was previously reported. Using this modified G protein, we determined the structure of the ETB-eGt complex bound to the modified Nb35. The determined structure of ETB receptor was the same as the previously reported ETB-Gi complex, and the resulting dataset demonstrated significantly improved anisotropy. This modified G protein will be utilized for the structural determination of other GPCR-Gi complexes. |
---|---|
ISSN: | 0006-291X 1090-2104 1090-2104 |
DOI: | 10.1016/j.bbrc.2023.149361 |