Acetate attenuates cyclophosphamide-induced cardiac injury via inhibition of NF-kB signaling and suppression of caspase 3-dependent apoptosis in Wistar rats

The goal of the current study was to examine the potential therapeutic effects of sodium acetate on cardiac toxicities caused by cyclophosphamide in Wistar rats. The possible involvement of NF-kB/caspase 3 signaling was also explored. Thirty-two male Wistar rats were divided into four groups at rand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicine & pharmacotherapy 2024-01, Vol.170, p.116019-116019, Article 116019
Hauptverfasser: Adeyemi, D.H., Hamed, M.A., Oluwole, D.T., Omole, A.I., Akhigbe, R.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of the current study was to examine the potential therapeutic effects of sodium acetate on cardiac toxicities caused by cyclophosphamide in Wistar rats. The possible involvement of NF-kB/caspase 3 signaling was also explored. Thirty-two male Wistar rats were divided into four groups at random. (n = 8). The control animals received 0.5 mL of distilled water orally for 14 days, the acetate-treated group received 200 mg/kg/day of sodium acetate orally for 14 consecutive days, and cyclophosphamide-treated rats received 150 mg/kg /day of cyclophosphamide i.p. on day 8, while cyclophosphamide + acetate group received sodium acetate and cyclophosphamide as earlier stated. Results showed that cyclophosphamide-induced cardiotoxicity, which manifested as a marked drop in body and cardiac weights as well as cardiac weight/tibial length, increased levels of troponin, C-reactive protein, lactate, and creatinine kinase, and lactate dehydrogenase activities in the plasma and cardiac tissue. Histopathological examination also revealed toxic cardiac histopathological changes. These alterations were associated with a significant increase in xanthine oxidase and myeloperoxidase activities, uric acid, malondialdehyde, TNF-α, IL-1β, NFkB, DNA fragmentation, and caspase 3 and caspase 9 activities in addition to a marked decline in Nrf2 and GSH levels, and SOD and catalase activities in the cardiac tissue. Acetate co-administration significantly attenuated cyclophosphamide cardiotoxicity by its antioxidant effect, preventing NFkB activation and caspase 9/caspase 3 signalings. This study shows that acetate co-administration may have cardio-protective effects against cyclophosphamide-induced cardiotoxicity by inhibiting NF-kB signaling and suppressing caspase-3-dependent apoptosis.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2023.116019