Stabilization of time-delay systems using finite-dimensional compensators
For linear time-invariant systems with one or more noncommensurate time delays, necessary and sufficient conditions are given for the existence of a finite-dimensional stabilizing feedback compensator. In particular, it is shown that a stabilizable time-delay system can always be stabilized using a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1985-01, Vol.30 (1), p.75-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | IEEE transactions on automatic control |
container_volume | 30 |
creator | Kamen, E. Khargonekar, P. Tannenbaum, A. |
description | For linear time-invariant systems with one or more noncommensurate time delays, necessary and sufficient conditions are given for the existence of a finite-dimensional stabilizing feedback compensator. In particular, it is shown that a stabilizable time-delay system can always be stabilized using a finite-dimensional compensator. The problem of explicitly constructing finite-dimensional stabilizing compensators is also considered. |
doi_str_mv | 10.1109/TAC.1985.1103789 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29054391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1103789</ieee_id><sourcerecordid>29054391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f7c63bac2917d5e7a8d20e223f23a7bead29343c355c6e10314889377a76078b3</originalsourceid><addsrcrecordid>eNqFkMtLAzEQh4MoWB93wcsexNvWPDab5FiKj0LBg_UcZrNZieyj7qSH-teb0kWPnoYf880H8yPkhtE5Y9Q8bBbLOTNaHpJQ2pyQGZNS51xycUpmlDKdG67Lc3KB-JliWRRsRlZvEarQhm-IYeizocli6Hxe-xb2Ge4x-g6zHYb-I2tCH2JapX2PCYY2c0O3TQHiMOIVOWugRX89zUvy_vS4Wb7k69fn1XKxzp0wRcwb5UpRgeOGqVp6Bbrm1HMuGi5AVR5qbkQhnJDSlT79wgqtjVAKVEmVrsQluT96t-PwtfMYbRfQ-baF3g87tNxQWQjD_gd1mTqQIoH0CLpxQBx9Y7dj6GDcW0btoVybyrWHcu1Ubjq5m9yADtpmhN4F_L0zTCqhDubbIxa893_WSfIDn8CCVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28664453</pqid></control><display><type>article</type><title>Stabilization of time-delay systems using finite-dimensional compensators</title><source>IEEE Electronic Library (IEL)</source><creator>Kamen, E. ; Khargonekar, P. ; Tannenbaum, A.</creator><creatorcontrib>Kamen, E. ; Khargonekar, P. ; Tannenbaum, A.</creatorcontrib><description>For linear time-invariant systems with one or more noncommensurate time delays, necessary and sufficient conditions are given for the existence of a finite-dimensional stabilizing feedback compensator. In particular, it is shown that a stabilizable time-delay system can always be stabilized using a finite-dimensional compensator. The problem of explicitly constructing finite-dimensional stabilizing compensators is also considered.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1985.1103789</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Delay effects ; Delay systems ; Exact sciences and technology ; Hydrogen ; Mathematics ; Output feedback ; Polynomials ; Stability ; Sufficient conditions</subject><ispartof>IEEE transactions on automatic control, 1985-01, Vol.30 (1), p.75-78</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f7c63bac2917d5e7a8d20e223f23a7bead29343c355c6e10314889377a76078b3</citedby><cites>FETCH-LOGICAL-c394t-f7c63bac2917d5e7a8d20e223f23a7bead29343c355c6e10314889377a76078b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1103789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1103789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9157373$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamen, E.</creatorcontrib><creatorcontrib>Khargonekar, P.</creatorcontrib><creatorcontrib>Tannenbaum, A.</creatorcontrib><title>Stabilization of time-delay systems using finite-dimensional compensators</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>For linear time-invariant systems with one or more noncommensurate time delays, necessary and sufficient conditions are given for the existence of a finite-dimensional stabilizing feedback compensator. In particular, it is shown that a stabilizable time-delay system can always be stabilized using a finite-dimensional compensator. The problem of explicitly constructing finite-dimensional stabilizing compensators is also considered.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Delay effects</subject><subject>Delay systems</subject><subject>Exact sciences and technology</subject><subject>Hydrogen</subject><subject>Mathematics</subject><subject>Output feedback</subject><subject>Polynomials</subject><subject>Stability</subject><subject>Sufficient conditions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLAzEQh4MoWB93wcsexNvWPDab5FiKj0LBg_UcZrNZieyj7qSH-teb0kWPnoYf880H8yPkhtE5Y9Q8bBbLOTNaHpJQ2pyQGZNS51xycUpmlDKdG67Lc3KB-JliWRRsRlZvEarQhm-IYeizocli6Hxe-xb2Ge4x-g6zHYb-I2tCH2JapX2PCYY2c0O3TQHiMOIVOWugRX89zUvy_vS4Wb7k69fn1XKxzp0wRcwb5UpRgeOGqVp6Bbrm1HMuGi5AVR5qbkQhnJDSlT79wgqtjVAKVEmVrsQluT96t-PwtfMYbRfQ-baF3g87tNxQWQjD_gd1mTqQIoH0CLpxQBx9Y7dj6GDcW0btoVybyrWHcu1Ubjq5m9yADtpmhN4F_L0zTCqhDubbIxa893_WSfIDn8CCVg</recordid><startdate>198501</startdate><enddate>198501</enddate><creator>Kamen, E.</creator><creator>Khargonekar, P.</creator><creator>Tannenbaum, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>198501</creationdate><title>Stabilization of time-delay systems using finite-dimensional compensators</title><author>Kamen, E. ; Khargonekar, P. ; Tannenbaum, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f7c63bac2917d5e7a8d20e223f23a7bead29343c355c6e10314889377a76078b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Delay effects</topic><topic>Delay systems</topic><topic>Exact sciences and technology</topic><topic>Hydrogen</topic><topic>Mathematics</topic><topic>Output feedback</topic><topic>Polynomials</topic><topic>Stability</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamen, E.</creatorcontrib><creatorcontrib>Khargonekar, P.</creatorcontrib><creatorcontrib>Tannenbaum, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kamen, E.</au><au>Khargonekar, P.</au><au>Tannenbaum, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of time-delay systems using finite-dimensional compensators</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1985-01</date><risdate>1985</risdate><volume>30</volume><issue>1</issue><spage>75</spage><epage>78</epage><pages>75-78</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>For linear time-invariant systems with one or more noncommensurate time delays, necessary and sufficient conditions are given for the existence of a finite-dimensional stabilizing feedback compensator. In particular, it is shown that a stabilizable time-delay system can always be stabilized using a finite-dimensional compensator. The problem of explicitly constructing finite-dimensional stabilizing compensators is also considered.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.1985.1103789</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1985-01, Vol.30 (1), p.75-78 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_29054391 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Computer science control theory systems Control system synthesis Control systems Control theory. Systems Delay effects Delay systems Exact sciences and technology Hydrogen Mathematics Output feedback Polynomials Stability Sufficient conditions |
title | Stabilization of time-delay systems using finite-dimensional compensators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20time-delay%20systems%20using%20finite-dimensional%20compensators&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Kamen,%20E.&rft.date=1985-01&rft.volume=30&rft.issue=1&rft.spage=75&rft.epage=78&rft.pages=75-78&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1985.1103789&rft_dat=%3Cproquest_RIE%3E29054391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28664453&rft_id=info:pmid/&rft_ieee_id=1103789&rfr_iscdi=true |