Stabilization of time-delay systems using finite-dimensional compensators

For linear time-invariant systems with one or more noncommensurate time delays, necessary and sufficient conditions are given for the existence of a finite-dimensional stabilizing feedback compensator. In particular, it is shown that a stabilizable time-delay system can always be stabilized using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1985-01, Vol.30 (1), p.75-78
Hauptverfasser: Kamen, E., Khargonekar, P., Tannenbaum, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 75
container_title IEEE transactions on automatic control
container_volume 30
creator Kamen, E.
Khargonekar, P.
Tannenbaum, A.
description For linear time-invariant systems with one or more noncommensurate time delays, necessary and sufficient conditions are given for the existence of a finite-dimensional stabilizing feedback compensator. In particular, it is shown that a stabilizable time-delay system can always be stabilized using a finite-dimensional compensator. The problem of explicitly constructing finite-dimensional stabilizing compensators is also considered.
doi_str_mv 10.1109/TAC.1985.1103789
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_29054391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1103789</ieee_id><sourcerecordid>29054391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f7c63bac2917d5e7a8d20e223f23a7bead29343c355c6e10314889377a76078b3</originalsourceid><addsrcrecordid>eNqFkMtLAzEQh4MoWB93wcsexNvWPDab5FiKj0LBg_UcZrNZieyj7qSH-teb0kWPnoYf880H8yPkhtE5Y9Q8bBbLOTNaHpJQ2pyQGZNS51xycUpmlDKdG67Lc3KB-JliWRRsRlZvEarQhm-IYeizocli6Hxe-xb2Ge4x-g6zHYb-I2tCH2JapX2PCYY2c0O3TQHiMOIVOWugRX89zUvy_vS4Wb7k69fn1XKxzp0wRcwb5UpRgeOGqVp6Bbrm1HMuGi5AVR5qbkQhnJDSlT79wgqtjVAKVEmVrsQluT96t-PwtfMYbRfQ-baF3g87tNxQWQjD_gd1mTqQIoH0CLpxQBx9Y7dj6GDcW0btoVybyrWHcu1Ubjq5m9yADtpmhN4F_L0zTCqhDubbIxa893_WSfIDn8CCVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28664453</pqid></control><display><type>article</type><title>Stabilization of time-delay systems using finite-dimensional compensators</title><source>IEEE Electronic Library (IEL)</source><creator>Kamen, E. ; Khargonekar, P. ; Tannenbaum, A.</creator><creatorcontrib>Kamen, E. ; Khargonekar, P. ; Tannenbaum, A.</creatorcontrib><description>For linear time-invariant systems with one or more noncommensurate time delays, necessary and sufficient conditions are given for the existence of a finite-dimensional stabilizing feedback compensator. In particular, it is shown that a stabilizable time-delay system can always be stabilized using a finite-dimensional compensator. The problem of explicitly constructing finite-dimensional stabilizing compensators is also considered.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1985.1103789</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Delay effects ; Delay systems ; Exact sciences and technology ; Hydrogen ; Mathematics ; Output feedback ; Polynomials ; Stability ; Sufficient conditions</subject><ispartof>IEEE transactions on automatic control, 1985-01, Vol.30 (1), p.75-78</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f7c63bac2917d5e7a8d20e223f23a7bead29343c355c6e10314889377a76078b3</citedby><cites>FETCH-LOGICAL-c394t-f7c63bac2917d5e7a8d20e223f23a7bead29343c355c6e10314889377a76078b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1103789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1103789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9157373$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamen, E.</creatorcontrib><creatorcontrib>Khargonekar, P.</creatorcontrib><creatorcontrib>Tannenbaum, A.</creatorcontrib><title>Stabilization of time-delay systems using finite-dimensional compensators</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>For linear time-invariant systems with one or more noncommensurate time delays, necessary and sufficient conditions are given for the existence of a finite-dimensional stabilizing feedback compensator. In particular, it is shown that a stabilizable time-delay system can always be stabilized using a finite-dimensional compensator. The problem of explicitly constructing finite-dimensional stabilizing compensators is also considered.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Delay effects</subject><subject>Delay systems</subject><subject>Exact sciences and technology</subject><subject>Hydrogen</subject><subject>Mathematics</subject><subject>Output feedback</subject><subject>Polynomials</subject><subject>Stability</subject><subject>Sufficient conditions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLAzEQh4MoWB93wcsexNvWPDab5FiKj0LBg_UcZrNZieyj7qSH-teb0kWPnoYf880H8yPkhtE5Y9Q8bBbLOTNaHpJQ2pyQGZNS51xycUpmlDKdG67Lc3KB-JliWRRsRlZvEarQhm-IYeizocli6Hxe-xb2Ge4x-g6zHYb-I2tCH2JapX2PCYY2c0O3TQHiMOIVOWugRX89zUvy_vS4Wb7k69fn1XKxzp0wRcwb5UpRgeOGqVp6Bbrm1HMuGi5AVR5qbkQhnJDSlT79wgqtjVAKVEmVrsQluT96t-PwtfMYbRfQ-baF3g87tNxQWQjD_gd1mTqQIoH0CLpxQBx9Y7dj6GDcW0btoVybyrWHcu1Ubjq5m9yADtpmhN4F_L0zTCqhDubbIxa893_WSfIDn8CCVg</recordid><startdate>198501</startdate><enddate>198501</enddate><creator>Kamen, E.</creator><creator>Khargonekar, P.</creator><creator>Tannenbaum, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>198501</creationdate><title>Stabilization of time-delay systems using finite-dimensional compensators</title><author>Kamen, E. ; Khargonekar, P. ; Tannenbaum, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f7c63bac2917d5e7a8d20e223f23a7bead29343c355c6e10314889377a76078b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Delay effects</topic><topic>Delay systems</topic><topic>Exact sciences and technology</topic><topic>Hydrogen</topic><topic>Mathematics</topic><topic>Output feedback</topic><topic>Polynomials</topic><topic>Stability</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamen, E.</creatorcontrib><creatorcontrib>Khargonekar, P.</creatorcontrib><creatorcontrib>Tannenbaum, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kamen, E.</au><au>Khargonekar, P.</au><au>Tannenbaum, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of time-delay systems using finite-dimensional compensators</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1985-01</date><risdate>1985</risdate><volume>30</volume><issue>1</issue><spage>75</spage><epage>78</epage><pages>75-78</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>For linear time-invariant systems with one or more noncommensurate time delays, necessary and sufficient conditions are given for the existence of a finite-dimensional stabilizing feedback compensator. In particular, it is shown that a stabilizable time-delay system can always be stabilized using a finite-dimensional compensator. The problem of explicitly constructing finite-dimensional stabilizing compensators is also considered.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.1985.1103789</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1985-01, Vol.30 (1), p.75-78
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_29054391
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computer science
control theory
systems
Control system synthesis
Control systems
Control theory. Systems
Delay effects
Delay systems
Exact sciences and technology
Hydrogen
Mathematics
Output feedback
Polynomials
Stability
Sufficient conditions
title Stabilization of time-delay systems using finite-dimensional compensators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20time-delay%20systems%20using%20finite-dimensional%20compensators&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Kamen,%20E.&rft.date=1985-01&rft.volume=30&rft.issue=1&rft.spage=75&rft.epage=78&rft.pages=75-78&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1985.1103789&rft_dat=%3Cproquest_RIE%3E29054391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28664453&rft_id=info:pmid/&rft_ieee_id=1103789&rfr_iscdi=true