Using the complex jacobi method to simulate Kerr non-linear photonic components
The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each ite...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2006, Vol.38 (1-3), p.35-44 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1-3 |
container_start_page | 35 |
container_title | Optical and quantum electronics |
container_volume | 38 |
creator | VANDERSTEEGEN, Peter MAES, Bjorn BIENSTMAN, Peter BAETS, Roel |
description | The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each iteration step, until a desired accuracy is achieved. We have extended the iterative process with an extra calculation step which allows simulating materials with the non-linear third order Kerr effect. Our adjustment of the discrete field operators in the update equation also introduces PMLs as absorbing boundaries and the total field/scattered field formalism as field source for this method. |
doi_str_mv | 10.1007/s11082-006-0021-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29052892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29052892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-b2fa5482736ca75dc917d637c4634a2210b2c61e9681becb70c1af1395ae083c3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWB8_wF02uhvNTWYmM0spvrDQjQV3IZPesSkzSU1SqP_e1BZcXM7innM4fITcALsHxuRDBGANLxir83EodidkApXkRQPy85RMmMifpoX2nFzEuGbZWFZsQuaLaN0XTSukxo-bAXd0rY3vLB0xrfySJk-jHbeDTkjfMQTqvCsG61AHuln55J01f1Hv0KV4Rc56PUS8PuolWTw_fUxfi9n85W36OCtMHpKKjve6KhsuRW20rJamBbmshTRlLUrNObCOmxqwrRvo0HSSGdA9iLbSyBphxCW5O_Rugv_eYkxqtNHgMGiHfhsVb1nFm5ZnIxyMJvgYA_ZqE-yow48Cpvbo1AGdykTUHp3a5cztsVxHo4c-aGds_A9KKWSdl_4C3nlvLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29052892</pqid></control><display><type>article</type><title>Using the complex jacobi method to simulate Kerr non-linear photonic components</title><source>SpringerLink Journals - AutoHoldings</source><creator>VANDERSTEEGEN, Peter ; MAES, Bjorn ; BIENSTMAN, Peter ; BAETS, Roel</creator><creatorcontrib>VANDERSTEEGEN, Peter ; MAES, Bjorn ; BIENSTMAN, Peter ; BAETS, Roel</creatorcontrib><description>The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each iteration step, until a desired accuracy is achieved. We have extended the iterative process with an extra calculation step which allows simulating materials with the non-linear third order Kerr effect. Our adjustment of the discrete field operators in the update equation also introduces PMLs as absorbing boundaries and the total field/scattered field formalism as field source for this method.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-006-0021-x</identifier><identifier>CODEN: OQELDI</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Applied sciences ; Circuit properties ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Integrated optics. Optical fibers and wave guides ; Nonlinear optics ; Optical and optoelectronic circuits ; Optics ; Phase conjugation, optical mixing; photorefractive and kerr effects ; Physics</subject><ispartof>Optical and quantum electronics, 2006, Vol.38 (1-3), p.35-44</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-b2fa5482736ca75dc917d637c4634a2210b2c61e9681becb70c1af1395ae083c3</citedby><cites>FETCH-LOGICAL-c306t-b2fa5482736ca75dc917d637c4634a2210b2c61e9681becb70c1af1395ae083c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,4038,4039,23913,23914,25123,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17737646$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VANDERSTEEGEN, Peter</creatorcontrib><creatorcontrib>MAES, Bjorn</creatorcontrib><creatorcontrib>BIENSTMAN, Peter</creatorcontrib><creatorcontrib>BAETS, Roel</creatorcontrib><title>Using the complex jacobi method to simulate Kerr non-linear photonic components</title><title>Optical and quantum electronics</title><description>The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each iteration step, until a desired accuracy is achieved. We have extended the iterative process with an extra calculation step which allows simulating materials with the non-linear third order Kerr effect. Our adjustment of the discrete field operators in the update equation also introduces PMLs as absorbing boundaries and the total field/scattered field formalism as field source for this method.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Nonlinear optics</subject><subject>Optical and optoelectronic circuits</subject><subject>Optics</subject><subject>Phase conjugation, optical mixing; photorefractive and kerr effects</subject><subject>Physics</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMoWB8_wF02uhvNTWYmM0spvrDQjQV3IZPesSkzSU1SqP_e1BZcXM7innM4fITcALsHxuRDBGANLxir83EodidkApXkRQPy85RMmMifpoX2nFzEuGbZWFZsQuaLaN0XTSukxo-bAXd0rY3vLB0xrfySJk-jHbeDTkjfMQTqvCsG61AHuln55J01f1Hv0KV4Rc56PUS8PuolWTw_fUxfi9n85W36OCtMHpKKjve6KhsuRW20rJamBbmshTRlLUrNObCOmxqwrRvo0HSSGdA9iLbSyBphxCW5O_Rugv_eYkxqtNHgMGiHfhsVb1nFm5ZnIxyMJvgYA_ZqE-yow48Cpvbo1AGdykTUHp3a5cztsVxHo4c-aGds_A9KKWSdl_4C3nlvLw</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>VANDERSTEEGEN, Peter</creator><creator>MAES, Bjorn</creator><creator>BIENSTMAN, Peter</creator><creator>BAETS, Roel</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2006</creationdate><title>Using the complex jacobi method to simulate Kerr non-linear photonic components</title><author>VANDERSTEEGEN, Peter ; MAES, Bjorn ; BIENSTMAN, Peter ; BAETS, Roel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-b2fa5482736ca75dc917d637c4634a2210b2c61e9681becb70c1af1395ae083c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Nonlinear optics</topic><topic>Optical and optoelectronic circuits</topic><topic>Optics</topic><topic>Phase conjugation, optical mixing; photorefractive and kerr effects</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VANDERSTEEGEN, Peter</creatorcontrib><creatorcontrib>MAES, Bjorn</creatorcontrib><creatorcontrib>BIENSTMAN, Peter</creatorcontrib><creatorcontrib>BAETS, Roel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VANDERSTEEGEN, Peter</au><au>MAES, Bjorn</au><au>BIENSTMAN, Peter</au><au>BAETS, Roel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the complex jacobi method to simulate Kerr non-linear photonic components</atitle><jtitle>Optical and quantum electronics</jtitle><date>2006</date><risdate>2006</risdate><volume>38</volume><issue>1-3</issue><spage>35</spage><epage>44</epage><pages>35-44</pages><issn>0306-8919</issn><eissn>1572-817X</eissn><coden>OQELDI</coden><abstract>The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each iteration step, until a desired accuracy is achieved. We have extended the iterative process with an extra calculation step which allows simulating materials with the non-linear third order Kerr effect. Our adjustment of the discrete field operators in the update equation also introduces PMLs as absorbing boundaries and the total field/scattered field formalism as field source for this method.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11082-006-0021-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2006, Vol.38 (1-3), p.35-44 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_miscellaneous_29052892 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Circuit properties Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Fundamental areas of phenomenology (including applications) Integrated optics. Optical fibers and wave guides Nonlinear optics Optical and optoelectronic circuits Optics Phase conjugation, optical mixing photorefractive and kerr effects Physics |
title | Using the complex jacobi method to simulate Kerr non-linear photonic components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20complex%20jacobi%20method%20to%20simulate%20Kerr%20non-linear%20photonic%20components&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=VANDERSTEEGEN,%20Peter&rft.date=2006&rft.volume=38&rft.issue=1-3&rft.spage=35&rft.epage=44&rft.pages=35-44&rft.issn=0306-8919&rft.eissn=1572-817X&rft.coden=OQELDI&rft_id=info:doi/10.1007/s11082-006-0021-x&rft_dat=%3Cproquest_cross%3E29052892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29052892&rft_id=info:pmid/&rfr_iscdi=true |