Using the complex jacobi method to simulate Kerr non-linear photonic components

The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each ite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2006, Vol.38 (1-3), p.35-44
Hauptverfasser: VANDERSTEEGEN, Peter, MAES, Bjorn, BIENSTMAN, Peter, BAETS, Roel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 1-3
container_start_page 35
container_title Optical and quantum electronics
container_volume 38
creator VANDERSTEEGEN, Peter
MAES, Bjorn
BIENSTMAN, Peter
BAETS, Roel
description The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each iteration step, until a desired accuracy is achieved. We have extended the iterative process with an extra calculation step which allows simulating materials with the non-linear third order Kerr effect. Our adjustment of the discrete field operators in the update equation also introduces PMLs as absorbing boundaries and the total field/scattered field formalism as field source for this method.
doi_str_mv 10.1007/s11082-006-0021-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29052892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29052892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-b2fa5482736ca75dc917d637c4634a2210b2c61e9681becb70c1af1395ae083c3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMoWB8_wF02uhvNTWYmM0spvrDQjQV3IZPesSkzSU1SqP_e1BZcXM7innM4fITcALsHxuRDBGANLxir83EodidkApXkRQPy85RMmMifpoX2nFzEuGbZWFZsQuaLaN0XTSukxo-bAXd0rY3vLB0xrfySJk-jHbeDTkjfMQTqvCsG61AHuln55J01f1Hv0KV4Rc56PUS8PuolWTw_fUxfi9n85W36OCtMHpKKjve6KhsuRW20rJamBbmshTRlLUrNObCOmxqwrRvo0HSSGdA9iLbSyBphxCW5O_Rugv_eYkxqtNHgMGiHfhsVb1nFm5ZnIxyMJvgYA_ZqE-yow48Cpvbo1AGdykTUHp3a5cztsVxHo4c-aGds_A9KKWSdl_4C3nlvLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29052892</pqid></control><display><type>article</type><title>Using the complex jacobi method to simulate Kerr non-linear photonic components</title><source>SpringerLink Journals - AutoHoldings</source><creator>VANDERSTEEGEN, Peter ; MAES, Bjorn ; BIENSTMAN, Peter ; BAETS, Roel</creator><creatorcontrib>VANDERSTEEGEN, Peter ; MAES, Bjorn ; BIENSTMAN, Peter ; BAETS, Roel</creatorcontrib><description>The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each iteration step, until a desired accuracy is achieved. We have extended the iterative process with an extra calculation step which allows simulating materials with the non-linear third order Kerr effect. Our adjustment of the discrete field operators in the update equation also introduces PMLs as absorbing boundaries and the total field/scattered field formalism as field source for this method.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-006-0021-x</identifier><identifier>CODEN: OQELDI</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Applied sciences ; Circuit properties ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Integrated optics. Optical fibers and wave guides ; Nonlinear optics ; Optical and optoelectronic circuits ; Optics ; Phase conjugation, optical mixing; photorefractive and kerr effects ; Physics</subject><ispartof>Optical and quantum electronics, 2006, Vol.38 (1-3), p.35-44</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-b2fa5482736ca75dc917d637c4634a2210b2c61e9681becb70c1af1395ae083c3</citedby><cites>FETCH-LOGICAL-c306t-b2fa5482736ca75dc917d637c4634a2210b2c61e9681becb70c1af1395ae083c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,4038,4039,23913,23914,25123,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17737646$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VANDERSTEEGEN, Peter</creatorcontrib><creatorcontrib>MAES, Bjorn</creatorcontrib><creatorcontrib>BIENSTMAN, Peter</creatorcontrib><creatorcontrib>BAETS, Roel</creatorcontrib><title>Using the complex jacobi method to simulate Kerr non-linear photonic components</title><title>Optical and quantum electronics</title><description>The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each iteration step, until a desired accuracy is achieved. We have extended the iterative process with an extra calculation step which allows simulating materials with the non-linear third order Kerr effect. Our adjustment of the discrete field operators in the update equation also introduces PMLs as absorbing boundaries and the total field/scattered field formalism as field source for this method.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Nonlinear optics</subject><subject>Optical and optoelectronic circuits</subject><subject>Optics</subject><subject>Phase conjugation, optical mixing; photorefractive and kerr effects</subject><subject>Physics</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhYMoWB8_wF02uhvNTWYmM0spvrDQjQV3IZPesSkzSU1SqP_e1BZcXM7innM4fITcALsHxuRDBGANLxir83EodidkApXkRQPy85RMmMifpoX2nFzEuGbZWFZsQuaLaN0XTSukxo-bAXd0rY3vLB0xrfySJk-jHbeDTkjfMQTqvCsG61AHuln55J01f1Hv0KV4Rc56PUS8PuolWTw_fUxfi9n85W36OCtMHpKKjve6KhsuRW20rJamBbmshTRlLUrNObCOmxqwrRvo0HSSGdA9iLbSyBphxCW5O_Rugv_eYkxqtNHgMGiHfhsVb1nFm5ZnIxyMJvgYA_ZqE-yow48Cpvbo1AGdykTUHp3a5cztsVxHo4c-aGds_A9KKWSdl_4C3nlvLw</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>VANDERSTEEGEN, Peter</creator><creator>MAES, Bjorn</creator><creator>BIENSTMAN, Peter</creator><creator>BAETS, Roel</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2006</creationdate><title>Using the complex jacobi method to simulate Kerr non-linear photonic components</title><author>VANDERSTEEGEN, Peter ; MAES, Bjorn ; BIENSTMAN, Peter ; BAETS, Roel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-b2fa5482736ca75dc917d637c4634a2210b2c61e9681becb70c1af1395ae083c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Nonlinear optics</topic><topic>Optical and optoelectronic circuits</topic><topic>Optics</topic><topic>Phase conjugation, optical mixing; photorefractive and kerr effects</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VANDERSTEEGEN, Peter</creatorcontrib><creatorcontrib>MAES, Bjorn</creatorcontrib><creatorcontrib>BIENSTMAN, Peter</creatorcontrib><creatorcontrib>BAETS, Roel</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VANDERSTEEGEN, Peter</au><au>MAES, Bjorn</au><au>BIENSTMAN, Peter</au><au>BAETS, Roel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the complex jacobi method to simulate Kerr non-linear photonic components</atitle><jtitle>Optical and quantum electronics</jtitle><date>2006</date><risdate>2006</risdate><volume>38</volume><issue>1-3</issue><spage>35</spage><epage>44</epage><pages>35-44</pages><issn>0306-8919</issn><eissn>1572-817X</eissn><coden>OQELDI</coden><abstract>The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each iteration step, until a desired accuracy is achieved. We have extended the iterative process with an extra calculation step which allows simulating materials with the non-linear third order Kerr effect. Our adjustment of the discrete field operators in the update equation also introduces PMLs as absorbing boundaries and the total field/scattered field formalism as field source for this method.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11082-006-0021-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2006, Vol.38 (1-3), p.35-44
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_miscellaneous_29052892
source SpringerLink Journals - AutoHoldings
subjects Applied sciences
Circuit properties
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Integrated optics. Optical fibers and wave guides
Nonlinear optics
Optical and optoelectronic circuits
Optics
Phase conjugation, optical mixing
photorefractive and kerr effects
Physics
title Using the complex jacobi method to simulate Kerr non-linear photonic components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20complex%20jacobi%20method%20to%20simulate%20Kerr%20non-linear%20photonic%20components&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=VANDERSTEEGEN,%20Peter&rft.date=2006&rft.volume=38&rft.issue=1-3&rft.spage=35&rft.epage=44&rft.pages=35-44&rft.issn=0306-8919&rft.eissn=1572-817X&rft.coden=OQELDI&rft_id=info:doi/10.1007/s11082-006-0021-x&rft_dat=%3Cproquest_cross%3E29052892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29052892&rft_id=info:pmid/&rfr_iscdi=true