Using the complex jacobi method to simulate Kerr non-linear photonic components
The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each ite...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2006, Vol.38 (1-3), p.35-44 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The iterative complex Jacobi technique has been extended to simulate the third order Kerr effect in wavelength scale dielectric structures. This method solves the Helmholtz equation in a discrete finite simulation space by an iterative process. An update equation refines the field values at each iteration step, until a desired accuracy is achieved. We have extended the iterative process with an extra calculation step which allows simulating materials with the non-linear third order Kerr effect. Our adjustment of the discrete field operators in the update equation also introduces PMLs as absorbing boundaries and the total field/scattered field formalism as field source for this method. |
---|---|
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-006-0021-x |