Astragaloside IV reduces lung injury in lethal sepsis via promoting treg cells expansion and inhibiting inflammatory responses

Sepsis is a systemic inflammatory response syndrome caused by an infection progressing to sepsis-associated organ failure (such as lung injury). Our previous review revealed that Astragaloside IV (ASI-IV), one of the primary bioactive ingredients in Astragalus membranaceus (Fisch) Bge (Huang-Qi), ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pakistan journal of pharmaceutical sciences 2023-11, Vol.36 (6), p.1709-1718
Hauptverfasser: Yang, Haihao, Yin, Na, Gu, Qianlan, Wu, Zhao, Xu, Ying, Gao, Jie, Qin, Dongdong, Wan, Chunping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sepsis is a systemic inflammatory response syndrome caused by an infection progressing to sepsis-associated organ failure (such as lung injury). Our previous review revealed that Astragaloside IV (ASI-IV), one of the primary bioactive ingredients in Astragalus membranaceus (Fisch) Bge (Huang-Qi), had been shown to exert anti-inflammatory and immunomodulatory effects. Nevertheless, it is still unclear whether ASI-IV could attenuate septic lung injury via activating regulatory T-cells (Tregs). This study was designed to evaluate the therapeutic potential of ASI-IV on sepsis-induced lung injury and to further explore its underlying mechanism. In the murine models of cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) induced sepsis, ASI-IV can markedly improve the survival rate and reduce inflammatory lung injury, protect mice against exacerbated inflammatory responses by decreasing myeloid cell infiltration and down-regulating IL-6 and TNF-α in lung tissue. Meanwhile, Treg cell-related gene expression, including Foxp3 and IL-10, significantly increased after ASI-IV treatment. Furthermore, ASI-IV notably promoted the differentiation of naïve CD4 T cells into T regulatory cells without obviously affecting Th1 and Th17 differentiation. Our results indicated that ASI-IV could attenuate septic lung injury by promoting Treg cell expansion and inhibiting inflammatory responses. It represents a promising agent for the treatment of sepsis.
ISSN:1011-601X
DOI:10.36721/PJPS.2023.36.6.REG.1709-1718.1