Performance of non-formalin fixed paraffin embedded samples in hybrid capture and amplicon next-generation sequencing panels
Genomic profiling using next-generation sequencing (NGS) is fundamental for driving prognostic and therapy in cancer. Formalin-fixed paraffin embedded (FFPE) tissue is the widely used material, whereas non-FFPE may represent an alternative. However, studies comparing the NGS performance of non-FFPE...
Gespeichert in:
Veröffentlicht in: | Diagnostic cytopathology 2024-03, Vol.52 (3), p.171-182 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Genomic profiling using next-generation sequencing (NGS) is fundamental for driving prognostic and therapy in cancer. Formalin-fixed paraffin embedded (FFPE) tissue is the widely used material, whereas non-FFPE may represent an alternative. However, studies comparing the NGS performance of non-FFPE materials to FFPE are still lacking in the literature. The objective of this study was to characterize in non-FFPE preparations the nucleic acid yield and NGS performance on both a capture-based and an amplicon-based NGS platform. NGS quality metrics obtained from non-FFPE preparations were compared to FFPE.
We analyzed the cellularity and nucleic acid yield in 111 tumors from non-FFPE preparations. In addition, comprehensive hybrid capture panel sequencing metrics obtained from DNA and RNA libraries were compared between independent non-FFPE and FFPE samples. A paired comparison between non-FFPE and FFPE samples was performed to analyze concordance in mutant allele detection using an amplicon panel.
The mean target coverage from DNA libraries was 2× higher in non-FFPE samples than in FFPE. The detection of exogenous DNA was 2.5× higher in non-FFPE than in FFPE. Conversely, a lower performance was observed in non-FFPE RNA libraries in comparison to FFPE DNA libraries with no impact in minimum standard cutoffs. The variant allele detection in non-FFPE was found to be comparable to that of FFPE tumor samples in matched samples.
Non-FFPE was demonstrated to be a suitable material for DNA and RNA library preparations using a comprehensive NGS panel. This is the first study reporting library quality metrics according to the TSO500 analysis pipeline. |
---|---|
ISSN: | 8755-1039 1097-0339 |
DOI: | 10.1002/dc.25267 |