Compressive Strain in Platinum–Iridium–Nickel Zigzag‐Like Nanowire Boosts Hydrogen Catalysis

Strain effect in the structurally defective materials can contribute to the catalysis optimization. However, it is challenging to achieve the performance improvement by strain modulation with the help of geometrical structure because strain is spatially dependent. Here, a new class of compressively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-05, Vol.20 (22), p.e2310036-n/a
Hauptverfasser: Wang, Mingmin, Tang, Chongyang, Geng, Shize, Zhan, Changhong, Wang, Liyuan, Huang, Wei‐Hsiang, Pao, Chih‐Wen, Hu, Zhiwei, Li, Yunhua, Huang, Xiaoqing, Bu, Lingzheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strain effect in the structurally defective materials can contribute to the catalysis optimization. However, it is challenging to achieve the performance improvement by strain modulation with the help of geometrical structure because strain is spatially dependent. Here, a new class of compressively strained platinum–iridium‐metal zigzag‐like nanowires (PtIrM ZNWs, M = nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn) and gallium (Ga)) is reported as the efficient alkaline hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) catalysts. Particularly, the optimized PtIrNi ZNWs with 3% compressive strain (cs‐PtIrNi ZNWs) can achieve the highest HER/HOR performances among all the catalysts investigate. Their HOR mass and specific activities are 3.2/14.4 and 2.6/32.7 times larger than those of PtIrNi NWs and commercial Pt/C, respectively. Simultaneously, they can exhibit the superior stability and high CO resistance for HOR. Further, experimental and theoretical studies collectively reveal that the compressive strain in cs‐PtIrNi ZNWs effectively weakens the adsorption of hydroxyl intermediate and modulates the electronic structure, resulting in the weakened hydrogen binding energy (HBE) and moderate hydroxide binding energy (OHBE), beneficial for the improvement of HOR performance. This work highlights the importance of strain tuning in enhancing Pt‐based nanomaterials for hydrogen catalysis and beyond. A class of compressively strained platinum–iridium–nickel zigzag‐like nanowires with remarkable alkaline hydrogen evolution reaction and hydrogen oxidation reaction performances are successfully explored. The intrinsic compressive strain in this zigzag‐shaped nanomaterial can effectively weaken the adsorption of hydroxyl intermediate and modulate the electronic structure, achieving the efficient bifunctional hydrogen catalysis.
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202310036