Plant airborne defense against insects, viruses, and beyond
Plants emit volatiles as signals to trigger broad physiological responses, including airborne defense (AD). Gong et al. (Nature 2023; 622: 139–145) recently reported the genetic framework of how plants use AD to combat aphids and viruses. The study elucidates the mutualistic relationships between ap...
Gespeichert in:
Veröffentlicht in: | Trends in plant science 2024-03, Vol.29 (3), p.283-285 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plants emit volatiles as signals to trigger broad physiological responses, including airborne defense (AD). Gong et al. (Nature 2023; 622: 139–145) recently reported the genetic framework of how plants use AD to combat aphids and viruses. The study elucidates the mutualistic relationships between aphids and the viruses they transmit, revealing the broad biological and ecological significance of AD.
Plants emit volatiles as signals to trigger broad physiological responses, including airborne defense (AD). Gong et al. (Nature 2023; 622: 139–145) recently reported the genetic framework of how plants use AD to combat aphids and viruses. The study elucidates the mutualistic relationships between aphids and the viruses they transmit, revealing the broad biological and ecological significance of AD. |
---|---|
ISSN: | 1360-1385 1878-4372 |
DOI: | 10.1016/j.tplants.2023.11.012 |