Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation

The anti-hepatocellular carcinoma effects of TET are acknowledged, but its application is hindered by its poor water solubility and low bioavailability. Conventional methods for nanocrystal preparation are laborious and lack control. To address these limitations, we propose employing the microfluidi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AAPS PharmSciTech 2023-12, Vol.25 (1), p.4-4, Article 4
Hauptverfasser: Huang, Jinping, Huang, Shuwen, Liu, Shengjun, Feng, Lizhen, Huang, Wenxiu, Wang, Yao, Huang, Dongyi, Huang, Tingting, Huang, Xingzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 1
container_start_page 4
container_title AAPS PharmSciTech
container_volume 25
creator Huang, Jinping
Huang, Shuwen
Liu, Shengjun
Feng, Lizhen
Huang, Wenxiu
Wang, Yao
Huang, Dongyi
Huang, Tingting
Huang, Xingzhen
description The anti-hepatocellular carcinoma effects of TET are acknowledged, but its application is hindered by its poor water solubility and low bioavailability. Conventional methods for nanocrystal preparation are laborious and lack control. To address these limitations, we propose employing the microfluidic method in the preparation of TET nanocrystals, aiming to enhance the aforementioned constraints. The objectives of this study were to prepare TET nanocrystals (TET-NC@GL) using a Y-microfluidic method with glycyrrhetinic acid (GL) as a stabilizer. The optimal preparation prescription was determined through a single-factor test and Box-Behnken response surface method. Additionally, the nanocrystals prepared with the commonly used stabilizer polyvinylpyrrolidone K30 (PVPK30), known as TET-NC@PVPK30, were characterized and evaluated for their toxicity to HepG2 cells. Hybridized nanocrystals (TET-HNC@GL and TET-HNC@PVPK30) were synthesized using a water-soluble aggregation-induced emission (AIE) fluorescent probe (TVP). Qualitative and quantitative cellular uptake experiments were conducted using these hybridized nanocrystals. Conducting in vivo pharmacokinetic assays evaluates the relative bioavailability of nanocrystals. The results indicated that TET-NC@GL, optimized using the response surface method, had a particle size of 136.47 ± 3.31 nm and a PDI of 0.219 ± 0.002. The administration of TET-NC@GL significantly enhanced the cell inhibition rate compared to the TET group and the TET-NC@PVPK30 group ( P  
doi_str_mv 10.1208/s12249-023-02718-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2904155946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904155946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-67e3544abf5c32cb8730348ee540e25f817caad4e7810fd6d152c83e0d693203</originalsourceid><addsrcrecordid>eNp9kDtPwzAYRS0EoqXwBxiQR5aAX2mcEVUFKrXAULFajvMFXKVxsZNK_fe4TUFMDJZf57vSPQhdU3JHGZH3gTIm8oQwHldGZUJP0JCmnCR5ztnpn_MAXYSwIpGkOT9HAy4pFVLwIarePGy01611DXYVXkLrdVN62wB-0Y0zfhdaXQdc7PDCGu-qurOlNXgB7acrcWTxrA141uB323rXP-wvW4enW113h-hLdFbFFLg67iO0fJwuJ8_J_PVpNnmYJ4aLrE3GGfBUCF1UqeHMFDLjhAsJkAoCLK0kzYzWpYBMUlKV45KmzEgOpBzHloSP0G0fu_Huq4PQqrUNBupaN-C6oFhOBE3TXIwjyno0dgrBQ6U23q613ylK1F6v6vWqKE0d9Coah26O-V2xhvJ35MdnBHgPhPjVfIBXK9f5Jlb-L_Yb_z2FgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904155946</pqid></control><display><type>article</type><title>Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Huang, Jinping ; Huang, Shuwen ; Liu, Shengjun ; Feng, Lizhen ; Huang, Wenxiu ; Wang, Yao ; Huang, Dongyi ; Huang, Tingting ; Huang, Xingzhen</creator><creatorcontrib>Huang, Jinping ; Huang, Shuwen ; Liu, Shengjun ; Feng, Lizhen ; Huang, Wenxiu ; Wang, Yao ; Huang, Dongyi ; Huang, Tingting ; Huang, Xingzhen</creatorcontrib><description>The anti-hepatocellular carcinoma effects of TET are acknowledged, but its application is hindered by its poor water solubility and low bioavailability. Conventional methods for nanocrystal preparation are laborious and lack control. To address these limitations, we propose employing the microfluidic method in the preparation of TET nanocrystals, aiming to enhance the aforementioned constraints. The objectives of this study were to prepare TET nanocrystals (TET-NC@GL) using a Y-microfluidic method with glycyrrhetinic acid (GL) as a stabilizer. The optimal preparation prescription was determined through a single-factor test and Box-Behnken response surface method. Additionally, the nanocrystals prepared with the commonly used stabilizer polyvinylpyrrolidone K30 (PVPK30), known as TET-NC@PVPK30, were characterized and evaluated for their toxicity to HepG2 cells. Hybridized nanocrystals (TET-HNC@GL and TET-HNC@PVPK30) were synthesized using a water-soluble aggregation-induced emission (AIE) fluorescent probe (TVP). Qualitative and quantitative cellular uptake experiments were conducted using these hybridized nanocrystals. Conducting in vivo pharmacokinetic assays evaluates the relative bioavailability of nanocrystals. The results indicated that TET-NC@GL, optimized using the response surface method, had a particle size of 136.47 ± 3.31 nm and a PDI of 0.219 ± 0.002. The administration of TET-NC@GL significantly enhanced the cell inhibition rate compared to the TET group and the TET-NC@PVPK30 group ( P  &lt; 0.01). Moreover, the qualitative and quantitative cellular uptake results revealed a significant enhancement in cellular uptake in the TET-HNC@GL administration group compared to the TET-HNC@PVPK30 group ( P  &lt; 0.01). In vivo pharmacokinetic results showed that the bioavailability of TET-NC@GL group was 3.5 times higher than that of the TET group. The results demonstrate the successful preparation of TET-NC@GL nanocrystals. Graphical Abstract</description><identifier>ISSN: 1530-9932</identifier><identifier>EISSN: 1530-9932</identifier><identifier>DOI: 10.1208/s12249-023-02718-1</identifier><identifier>PMID: 38114843</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemistry ; Biological Availability ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Microfluidics ; Nanoparticles - chemistry ; Particle Size ; Pharmacology/Toxicology ; Pharmacy ; Research Article ; Solubility ; Water</subject><ispartof>AAPS PharmSciTech, 2023-12, Vol.25 (1), p.4-4, Article 4</ispartof><rights>The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-67e3544abf5c32cb8730348ee540e25f817caad4e7810fd6d152c83e0d693203</citedby><cites>FETCH-LOGICAL-c347t-67e3544abf5c32cb8730348ee540e25f817caad4e7810fd6d152c83e0d693203</cites><orcidid>0000-0003-4779-0807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1208/s12249-023-02718-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1208/s12249-023-02718-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38114843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jinping</creatorcontrib><creatorcontrib>Huang, Shuwen</creatorcontrib><creatorcontrib>Liu, Shengjun</creatorcontrib><creatorcontrib>Feng, Lizhen</creatorcontrib><creatorcontrib>Huang, Wenxiu</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Huang, Dongyi</creatorcontrib><creatorcontrib>Huang, Tingting</creatorcontrib><creatorcontrib>Huang, Xingzhen</creatorcontrib><title>Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation</title><title>AAPS PharmSciTech</title><addtitle>AAPS PharmSciTech</addtitle><addtitle>AAPS PharmSciTech</addtitle><description>The anti-hepatocellular carcinoma effects of TET are acknowledged, but its application is hindered by its poor water solubility and low bioavailability. Conventional methods for nanocrystal preparation are laborious and lack control. To address these limitations, we propose employing the microfluidic method in the preparation of TET nanocrystals, aiming to enhance the aforementioned constraints. The objectives of this study were to prepare TET nanocrystals (TET-NC@GL) using a Y-microfluidic method with glycyrrhetinic acid (GL) as a stabilizer. The optimal preparation prescription was determined through a single-factor test and Box-Behnken response surface method. Additionally, the nanocrystals prepared with the commonly used stabilizer polyvinylpyrrolidone K30 (PVPK30), known as TET-NC@PVPK30, were characterized and evaluated for their toxicity to HepG2 cells. Hybridized nanocrystals (TET-HNC@GL and TET-HNC@PVPK30) were synthesized using a water-soluble aggregation-induced emission (AIE) fluorescent probe (TVP). Qualitative and quantitative cellular uptake experiments were conducted using these hybridized nanocrystals. Conducting in vivo pharmacokinetic assays evaluates the relative bioavailability of nanocrystals. The results indicated that TET-NC@GL, optimized using the response surface method, had a particle size of 136.47 ± 3.31 nm and a PDI of 0.219 ± 0.002. The administration of TET-NC@GL significantly enhanced the cell inhibition rate compared to the TET group and the TET-NC@PVPK30 group ( P  &lt; 0.01). Moreover, the qualitative and quantitative cellular uptake results revealed a significant enhancement in cellular uptake in the TET-HNC@GL administration group compared to the TET-HNC@PVPK30 group ( P  &lt; 0.01). In vivo pharmacokinetic results showed that the bioavailability of TET-NC@GL group was 3.5 times higher than that of the TET group. The results demonstrate the successful preparation of TET-NC@GL nanocrystals. Graphical Abstract</description><subject>Biochemistry</subject><subject>Biological Availability</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Microfluidics</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Research Article</subject><subject>Solubility</subject><subject>Water</subject><issn>1530-9932</issn><issn>1530-9932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAYRS0EoqXwBxiQR5aAX2mcEVUFKrXAULFajvMFXKVxsZNK_fe4TUFMDJZf57vSPQhdU3JHGZH3gTIm8oQwHldGZUJP0JCmnCR5ztnpn_MAXYSwIpGkOT9HAy4pFVLwIarePGy01611DXYVXkLrdVN62wB-0Y0zfhdaXQdc7PDCGu-qurOlNXgB7acrcWTxrA141uB323rXP-wvW4enW113h-hLdFbFFLg67iO0fJwuJ8_J_PVpNnmYJ4aLrE3GGfBUCF1UqeHMFDLjhAsJkAoCLK0kzYzWpYBMUlKV45KmzEgOpBzHloSP0G0fu_Huq4PQqrUNBupaN-C6oFhOBE3TXIwjyno0dgrBQ6U23q613ylK1F6v6vWqKE0d9Coah26O-V2xhvJ35MdnBHgPhPjVfIBXK9f5Jlb-L_Yb_z2FgA</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>Huang, Jinping</creator><creator>Huang, Shuwen</creator><creator>Liu, Shengjun</creator><creator>Feng, Lizhen</creator><creator>Huang, Wenxiu</creator><creator>Wang, Yao</creator><creator>Huang, Dongyi</creator><creator>Huang, Tingting</creator><creator>Huang, Xingzhen</creator><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4779-0807</orcidid></search><sort><creationdate>20231219</creationdate><title>Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation</title><author>Huang, Jinping ; Huang, Shuwen ; Liu, Shengjun ; Feng, Lizhen ; Huang, Wenxiu ; Wang, Yao ; Huang, Dongyi ; Huang, Tingting ; Huang, Xingzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-67e3544abf5c32cb8730348ee540e25f817caad4e7810fd6d152c83e0d693203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biochemistry</topic><topic>Biological Availability</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Microfluidics</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Research Article</topic><topic>Solubility</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jinping</creatorcontrib><creatorcontrib>Huang, Shuwen</creatorcontrib><creatorcontrib>Liu, Shengjun</creatorcontrib><creatorcontrib>Feng, Lizhen</creatorcontrib><creatorcontrib>Huang, Wenxiu</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Huang, Dongyi</creatorcontrib><creatorcontrib>Huang, Tingting</creatorcontrib><creatorcontrib>Huang, Xingzhen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>AAPS PharmSciTech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jinping</au><au>Huang, Shuwen</au><au>Liu, Shengjun</au><au>Feng, Lizhen</au><au>Huang, Wenxiu</au><au>Wang, Yao</au><au>Huang, Dongyi</au><au>Huang, Tingting</au><au>Huang, Xingzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation</atitle><jtitle>AAPS PharmSciTech</jtitle><stitle>AAPS PharmSciTech</stitle><addtitle>AAPS PharmSciTech</addtitle><date>2023-12-19</date><risdate>2023</risdate><volume>25</volume><issue>1</issue><spage>4</spage><epage>4</epage><pages>4-4</pages><artnum>4</artnum><issn>1530-9932</issn><eissn>1530-9932</eissn><abstract>The anti-hepatocellular carcinoma effects of TET are acknowledged, but its application is hindered by its poor water solubility and low bioavailability. Conventional methods for nanocrystal preparation are laborious and lack control. To address these limitations, we propose employing the microfluidic method in the preparation of TET nanocrystals, aiming to enhance the aforementioned constraints. The objectives of this study were to prepare TET nanocrystals (TET-NC@GL) using a Y-microfluidic method with glycyrrhetinic acid (GL) as a stabilizer. The optimal preparation prescription was determined through a single-factor test and Box-Behnken response surface method. Additionally, the nanocrystals prepared with the commonly used stabilizer polyvinylpyrrolidone K30 (PVPK30), known as TET-NC@PVPK30, were characterized and evaluated for their toxicity to HepG2 cells. Hybridized nanocrystals (TET-HNC@GL and TET-HNC@PVPK30) were synthesized using a water-soluble aggregation-induced emission (AIE) fluorescent probe (TVP). Qualitative and quantitative cellular uptake experiments were conducted using these hybridized nanocrystals. Conducting in vivo pharmacokinetic assays evaluates the relative bioavailability of nanocrystals. The results indicated that TET-NC@GL, optimized using the response surface method, had a particle size of 136.47 ± 3.31 nm and a PDI of 0.219 ± 0.002. The administration of TET-NC@GL significantly enhanced the cell inhibition rate compared to the TET group and the TET-NC@PVPK30 group ( P  &lt; 0.01). Moreover, the qualitative and quantitative cellular uptake results revealed a significant enhancement in cellular uptake in the TET-HNC@GL administration group compared to the TET-HNC@PVPK30 group ( P  &lt; 0.01). In vivo pharmacokinetic results showed that the bioavailability of TET-NC@GL group was 3.5 times higher than that of the TET group. The results demonstrate the successful preparation of TET-NC@GL nanocrystals. Graphical Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38114843</pmid><doi>10.1208/s12249-023-02718-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4779-0807</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-9932
ispartof AAPS PharmSciTech, 2023-12, Vol.25 (1), p.4-4, Article 4
issn 1530-9932
1530-9932
language eng
recordid cdi_proquest_miscellaneous_2904155946
source MEDLINE; SpringerNature Journals
subjects Biochemistry
Biological Availability
Biomedical and Life Sciences
Biomedicine
Biotechnology
Microfluidics
Nanoparticles - chemistry
Particle Size
Pharmacology/Toxicology
Pharmacy
Research Article
Solubility
Water
title Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Tetrandrine%20Nanocrystals%20by%20Microfluidic%20Method%20and%20Its%20In%20Vitro%20and%20In%20Vivo%20Evaluation&rft.jtitle=AAPS%20PharmSciTech&rft.au=Huang,%20Jinping&rft.date=2023-12-19&rft.volume=25&rft.issue=1&rft.spage=4&rft.epage=4&rft.pages=4-4&rft.artnum=4&rft.issn=1530-9932&rft.eissn=1530-9932&rft_id=info:doi/10.1208/s12249-023-02718-1&rft_dat=%3Cproquest_cross%3E2904155946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904155946&rft_id=info:pmid/38114843&rfr_iscdi=true