Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation
The anti-hepatocellular carcinoma effects of TET are acknowledged, but its application is hindered by its poor water solubility and low bioavailability. Conventional methods for nanocrystal preparation are laborious and lack control. To address these limitations, we propose employing the microfluidi...
Gespeichert in:
Veröffentlicht in: | AAPS PharmSciTech 2023-12, Vol.25 (1), p.4-4, Article 4 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The anti-hepatocellular carcinoma effects of TET are acknowledged, but its application is hindered by its poor water solubility and low bioavailability. Conventional methods for nanocrystal preparation are laborious and lack control. To address these limitations, we propose employing the microfluidic method in the preparation of TET nanocrystals, aiming to enhance the aforementioned constraints. The objectives of this study were to prepare TET nanocrystals (TET-NC@GL) using a Y-microfluidic method with glycyrrhetinic acid (GL) as a stabilizer. The optimal preparation prescription was determined through a single-factor test and Box-Behnken response surface method. Additionally, the nanocrystals prepared with the commonly used stabilizer polyvinylpyrrolidone K30 (PVPK30), known as TET-NC@PVPK30, were characterized and evaluated for their toxicity to HepG2 cells. Hybridized nanocrystals (TET-HNC@GL and TET-HNC@PVPK30) were synthesized using a water-soluble aggregation-induced emission (AIE) fluorescent probe (TVP). Qualitative and quantitative cellular uptake experiments were conducted using these hybridized nanocrystals. Conducting
in vivo
pharmacokinetic assays evaluates the relative bioavailability of nanocrystals. The results indicated that TET-NC@GL, optimized using the response surface method, had a particle size of 136.47 ± 3.31 nm and a PDI of 0.219 ± 0.002. The administration of TET-NC@GL significantly enhanced the cell inhibition rate compared to the TET group and the TET-NC@PVPK30 group (
P
|
---|---|
ISSN: | 1530-9932 1530-9932 |
DOI: | 10.1208/s12249-023-02718-1 |