Benzethonium chloride affects short chain fatty acids produced from anaerobic fermentation of waste activated sludge: Performance, biodegradation and mechanisms

Benzethonium chloride (BZC) is viewed as a promising disinfectant and widely applied in daily life. While studies related to its effect on waste activated sludge (WAS) anaerobic fermentation (AF) were seldom mentioned before. To understand how BZC affects AF of WAS, production of short chain fatty a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2024-02, Vol.250, p.121024-121024, Article 121024
Hauptverfasser: You, Fengyuan, Tang, Mengge, Zhang, Jiamin, Wang, Dongbo, Fu, Qizi, Zheng, Jiangfu, Ye, Boqun, Zhou, Yintong, Li, Xiaoming, Yang, Qi, Liu, Xuran, Duan, Abing, Liu, Junwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Benzethonium chloride (BZC) is viewed as a promising disinfectant and widely applied in daily life. While studies related to its effect on waste activated sludge (WAS) anaerobic fermentation (AF) were seldom mentioned before. To understand how BZC affects AF of WAS, production of short chain fatty acids (SCFAs), characteristics of WAS as well as microbial community were evaluated during AF. Results manifested a dose-specific relationship of dosages between BZC and SCFAs and the optimum yield arrived at 2441.01 mg COD/L with the addition of 0.030 g/g TSS BZC. Spectral results and protein secondary structure variation indicated that BZC denatured proteins in the solid phase into smaller proteins or amino acids with unstable structures. It was also found that BZC could stimulate the extracellular polymeric substances secretion and reduce the surface tension of WAS, leading to the enhancement of solubilization. Beside, BZC promoted the hydrolysis stage (increased by 7.09 % to 0.030 g/g TSS BZC), but inhibited acetogenesis and methanogenesis stages (decreased by 6.85 % and 14.75 % to 0.030 g/g TSS BZC). The microbial community was also regulated by BZC to facilitate the enrichment of hydrolytic and acidizing microorganisms (i.e. Firmicutes). All these variations caused by BZC were conducive to the accumulation of SCFAs. The findings contributed to investigating the effect of BZC on AF of WAS and provided a new idea for the future study of AF mechanism.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2023.121024