Sensitivity of ozone to bromine in the lower stratosphere

Measurements of BrO suggest that inorganic bromine (Br(sub y)) at and above the tropopause is 4 to 8 ppt greater than assumed in models used in past ozone trend assessment studies. This additional bromine is likely carried to the stratosphere by short-lived biogenic compounds and their decomposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2005-03, Vol.32 (5), p.n/a
Hauptverfasser: Salawitch, R. J., Weisenstein, D. K., Kovalenko, L. J., Sioris, C. E., Wennberg, P. O., Chance, K., Ko, M. K. W., McLinden, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Measurements of BrO suggest that inorganic bromine (Br(sub y)) at and above the tropopause is 4 to 8 ppt greater than assumed in models used in past ozone trend assessment studies. This additional bromine is likely carried to the stratosphere by short-lived biogenic compounds and their decomposition products, including tropospheric BrO. Including this additional bromine in an ozone trend simulation increases the computed ozone depletion over the past approx.25 years, leading to better agreement between measured and modeled ozone trends. This additional Br(sub y) (assumed constant over time) causes more ozone depletion because associated BrO provides a reaction partner for ClO, which increases due to anthropogenic sources. Enhanced Br(sub y) causes photochemical loss of ozone below approx.14 km to change from being controlled by HO(sub x) catalytic cycles (primarily HO2+O3) to a situation where loss by the BrO+HO2 cycle is also important.
ISSN:0094-8276
1944-8007
DOI:10.1029/2004GL021504