Uptake and reactivity of NO2 on the hydroxylated silica surface: A source of reactive oxygen species

We report state-of-the-art first-principles molecular dynamics results on the heterogeneous chemical uptake of NO2, a major anthropogenic pollutant, on the dry and wet hydroxylated surface of α-quartz, which is a significant component of silica-based catalysts and atmospheric dust aerosols. Our inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-12, Vol.159 (23)
Hauptverfasser: Liu, Ziao, Sinopoli, Alessandro, Francisco, Joseph S., Gladich, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report state-of-the-art first-principles molecular dynamics results on the heterogeneous chemical uptake of NO2, a major anthropogenic pollutant, on the dry and wet hydroxylated surface of α-quartz, which is a significant component of silica-based catalysts and atmospheric dust aerosols. Our investigation spotlights an unexpected chemical pathway by which NO2 (i) can be adsorbed as HONO by deprotonation of interfacial silanols (i.e., –Si–OH group) on silica, (ii) can be barrierless converted to nitric acid, and (iii) can finally dissociated to surface bounded NO and hydroxyl gas phase radicals. This chemical pathway does not invoke any previously experimentally postulated NO2 dimerization, dimerization that is less likely to occur at low NO2 concentrations. Moreover, water significantly catalyzes the HONO formation and the dissociation of nitric acid into surface-bounded NO and OH radicals, while visible light adsorption can further promote these chemical transformations. This work highlights how water-restricted solvation regimes on common mineral substrates are likely to be a source of reactive oxygen species, and it offers a theoretical framework for further and desirable experimental efforts, aiming to better constrain trace gases/mineral interactions at different relative humidity conditions.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0178259