On-Tissue Spatial Proteomics Integrating MALDI-MS Imaging with Shotgun Proteomics Reveals Soy Consumption-Induced Protein Changes in a Fragile X Syndrome Mouse Model

Fragile X syndrome (FXS), the leading cause of inherited intellectual disability and autism, is caused by the transcriptional silencing of the FMR1 gene, which encodes the fragile X messenger ribonucleoprotein (FMRP). FMRP interacts with numerous brain mRNAs that are involved in synaptic plasticity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical neuroscience 2024-01, Vol.15 (1), p.119-133
Hauptverfasser: Ma, Min, Yu, Qinying, Delafield, Daniel G., Cui, Yusi, Li, Zihui, Li, Miyang, Wu, Wenxin, Shi, Xudong, Westmark, Pamela R., Gutierrez, Alejandra, Ma, Gui, Gao, Ang, Xu, Meng, Xu, Wei, Westmark, Cara J., Li, Lingjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fragile X syndrome (FXS), the leading cause of inherited intellectual disability and autism, is caused by the transcriptional silencing of the FMR1 gene, which encodes the fragile X messenger ribonucleoprotein (FMRP). FMRP interacts with numerous brain mRNAs that are involved in synaptic plasticity and implicated in autism spectrum disorders. Our published studies indicate that single-source, soy-based diets are associated with increased seizures and autism. Thus, there is an acute need for an unbiased protein marker identification in FXS in response to soy consumption. Herein, we present a spatial proteomics approach integrating mass spectrometry imaging with label-free proteomics in the FXS mouse model to map the spatial distribution and quantify levels of proteins in the hippocampus and hypothalamus brain regions. In total, 1250 unique peptides were spatially resolved, demonstrating the diverse array of peptidomes present in the tissue slices and the broad coverage of the strategy. A group of proteins that are known to be involved in glycolysis, synaptic transmission, and coexpression network analysis suggest a significant association between soy proteins and metabolic and synaptic processes in the Fmr1 KO brain. Ultimately, this spatial proteomics work represents a crucial step toward identifying potential candidate protein markers and novel therapeutic targets for FXS.
ISSN:1948-7193
1948-7193
DOI:10.1021/acschemneuro.3c00497