Gamma-ray measurements for inertial confinement fusion applications

High-energy γ rays generated from inertial confinement fusion (ICF) experiments have become an important signature for studying the dynamics of implosion processes. Due to their high-energy and penetrating nature, γ rays are the most unperturbed fusion products, which can preserve the original birth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of Scientific Instruments 2023-04, Vol.94 (4)
Hauptverfasser: Kim, Yongho, Herrmann, Hans W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-energy γ rays generated from inertial confinement fusion (ICF) experiments have become an important signature for studying the dynamics of implosion processes. Due to their high-energy and penetrating nature, γ rays are the most unperturbed fusion products, which can preserve the original birth information of the fusion process. Fusion γ rays provide a direct measure of nuclear reaction rates (unlike x rays) without being compromised by Doppler spreading (unlike neutrons). However, unambiguous γ-ray measurements for ICF study further required a decade-long period of technological development, which included a deepening understanding of fusion γ-ray characteristics and innovations in instrument performance. This review article introduces the production mechanism of the prompt and secondary γ rays and various ICF performance parameters (e.g., bang time and burn width), which can be derived from γ-ray measurement. A technical overview will be followed by summarizing γ-ray detectors fielded or proposed, especially for high-yield ICF experiments at the Omega Laser Facility and National Ignition Facility. Over the past few years, γ-ray diagnostic technologies have been extended beyond ICF research. A few examples of non-ICF applications of γ-ray detectors are introduced at the end of this article.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0126969