Kinematic, Kinetic, and Temporal Metrics Associated With Golf Proficiency
McHugh, MP, O'Mahoney, CA, Orishimo, KF, Kremenic, IJ, and Nicholas, SJ. Kinematic, kinetic, and temporal metrics associated with golf proficiency. J Strength Cond Res 38(3): 599-606, 2024-The biomechanics of the golf swing have been studied extensively, but the literature is unclear on which m...
Gespeichert in:
Veröffentlicht in: | Journal of strength and conditioning research 2024-03, Vol.38 (3), p.599-606 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | McHugh, MP, O'Mahoney, CA, Orishimo, KF, Kremenic, IJ, and Nicholas, SJ. Kinematic, kinetic, and temporal metrics associated with golf proficiency. J Strength Cond Res 38(3): 599-606, 2024-The biomechanics of the golf swing have been studied extensively, but the literature is unclear on which metrics are indicative of proficiency. The purpose of this study was to determine which metrics identified golf proficiency. It was hypothesized that discrete kinematic, kinetic, and temporal metrics would vary depending on proficiency and that combinations of metrics from each category would explain specific proficiency metrics. Kinematic, kinetic, and temporal metrics and their sequencing were collected for shots performed with a driver in 33 male golfers categorized as proficient, average, or unskilled (based on a combination of handicap, ball velocity, and driving distance). Kinematic data were collected with high-speed motion analysis, and ground reaction forces (GRF) were collected from dual force plates. Proficient golfers had greater x-factor at ball impact and greater trunk deceleration before ball impact compared with average ( p < 0.05) and unskilled ( p < 0.01) golfers. Unskilled golfers had lower x-factor at the top of the back swing and lower peak x-factor, and they took longer to reach peak trunk velocity and peak lead foot GRF compared with average ( p < 0.05) and proficient ( p < 0.05) golfers. A combination of 2 kinematic metrics (x-factor at ball impact and peak pelvis velocity), 1 kinetic metric (peak lead foot GRF), and 2 timing metrics (the timing of peak trunk and arm velocity) explained 85% of the variability in ball velocity. The finding that x-factor at ball impact and trunk deceleration identified golf proficiency points to the potential for axial trunk rotation training to improve performance. |
---|---|
ISSN: | 1064-8011 1533-4287 |
DOI: | 10.1519/JSC.0000000000004663 |