Climate footprint assessment of plastic waste pyrolysis and impacts on the Danish waste management system

Increased plastic recycling is necessary to reduce environmental impacts related to manufacturing and end-of-life of plastic products, however, mechanical recycling (MR) – currently the most widespread recycling option for plastic waste – is limited by quality requirements for inputs and reduced qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2024-02, Vol.351, p.119780-119780, Article 119780
Hauptverfasser: Karlsson, M.B., Benedini, L., Jensen, C.D., Kamp, A., Henriksen, U.B., Thomsen, T.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased plastic recycling is necessary to reduce environmental impacts related to manufacturing and end-of-life of plastic products, however, mechanical recycling (MR) – currently the most widespread recycling option for plastic waste – is limited by quality requirements for inputs and reduced quality of outputs. In this study, pyrolysis of plastic waste is assessed against MR, municipal solid waste incineration (MSWI) and fuel substitution through climate footprint assessment (CFA) based on primary data from pyrolysis of plastic waste sourced from Danish waste producers. Results of the CFA are scaled to the Danish plastic waste resource in an impact assessment of current Danish plastic waste management, and scenarios are constructed to assess reductions through utilization of pyrolysis. Results of the CFA show highest benefits utilizing pyrolysis for monomer recovery (−1400 and −4800 kg CO2e per ton polystyrene (PS) and polymethyl methacrylate (PMMA), respectively) and MR for single polymer polyolefins (−1000 kg CO2e per ton PE). The two management options perform similarly with mixed plastic waste (200 kg CO2e per ton plastic waste). MSWI has the highest impact (1600–2200 kg CO2e per ton plastic waste) and should be avoided when alternatives are available. Scaling the results of the CFA to the full Danish plastic waste resource reveals an impact of 0.79 Mt CO2e in year 2020 of current plastic waste management. Utilizing pyrolysis to manage MR residues reduces the system impact by 15%. Greater reductions are possible through increased separation of plastic from residual waste. The best performance is achieved through a combination of MR and pyrolysis. •CFA of plastic waste pyrolysis compared with alternative management options.•Results scaled to the Danish national plastic waste resource.•Plastic waste pyrolysis performs best in combination with mechanical recycling.•Main limiting factor for performance is separation of plastic waste from residual waste streams.
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2023.119780