COL1A2 Barcoding: Bone Species Identification via Shotgun Proteomics

Species identification of fragmentary bones remains a challenging task in archeology and forensics. A species identification method for such fragmentary bones that has recently attracted interest is the use of bone collagen proteins. Here, we describe a method similar to DNA barcoding that reads col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2024-01, Vol.23 (1), p.377-385
Hauptverfasser: Taniguchi, Kei, Miyaguchi, Hajime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Species identification of fragmentary bones remains a challenging task in archeology and forensics. A species identification method for such fragmentary bones that has recently attracted interest is the use of bone collagen proteins. Here, we describe a method similar to DNA barcoding that reads collagen protein sequences in bone and automatically determines the species by performing sequence database searches. The method is almost identical to conventional shotgun proteomics analysis of bone samples, except that the database used by the SEQUEST search engine consisted only of entries for collagen type 1 alpha 2 (COL1A2) proteins from various vertebrates. Accordingly, the COL1A2 peptides that differ in sequence among species act as species marker peptides. In SEQUEST-based shotgun proteomics, the protein entries that contain more marker peptide sequences are assigned higher scores; therefore, the highest-scoring protein entry will be the COL1A2 entry for the species from which the analyzed bone was derived. We tested our method using bone samples from 30 vertebrate species and found that all species were correctly identified. In conclusion, COL1A2 can be used as a bone protein barcode and can be read through shotgun proteomics, allowing for automatic bone species identification. Data are available via ProteomeXchange with the identifier PXD045402.
ISSN:1535-3893
1535-3907
DOI:10.1021/acs.jproteome.3c00615