A Fast Alpha-Tree Algorithm for Extreme Dynamic Range Pixel Dissimilarities

The \alpha α -tree algorithm is a useful hierarchical representation technique which facilitates comprehension of images such as remote sensing and medical images. Most \alpha α -tree algorithms make use of priority queues to process image edges in a correct order, but because traditional priority q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-05, Vol.46 (5), p.3199-3212
Hauptverfasser: Ryu, Jiwoo, Trager, Scott C., Wilkinson, Michael H. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The \alpha α -tree algorithm is a useful hierarchical representation technique which facilitates comprehension of images such as remote sensing and medical images. Most \alpha α -tree algorithms make use of priority queues to process image edges in a correct order, but because traditional priority queues are inefficient in \alpha α -tree algorithms using extreme-dynamic-range pixel dissimilarities, they run slower compared with other related algorithms such as component tree. In this paper, we propose a novel hierarchical heap priority queue algorithm that can process \alpha α -tree edges much more efficiently than other state-of-the-art priority queues. Experimental results using 48-bit Sentinel-2 A remotely sensed images and randomly generated images have shown that the proposed hierarchical heap priority queue improved the timings of the flooding \alpha α -tree algorithm by replacing the heap priority queue with the proposed queue: 1.68 times in 4-N and 2.41 times in 8-N on Sentinel-2 A images, and 2.56 times and 4.43 times on randomly generated images.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2023.3341721