Development of nanofibrous scaffolds containing polylactic acid modified with turmeric and hydroxyapatite/vivianite nanoparticles for wound dressing applications

Damaging the outer layer of the body (the skin) has been a common issue for decades. Fabrication of nanofibrous membranes via the electrospinning technique for the sake of making the wound healing process more facile has caught a lot of interest. For this purpose, a polymeric scaffold of polylactic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-02, Vol.259 (Pt 1), p.128624-128624, Article 128624
Hauptverfasser: Hamed, Amr, Ashraf, Sherif, Mostafa, Mervat S., Khalaf, Mohamed, Yousef, Hesham, Mourad, Ibrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Damaging the outer layer of the body (the skin) has been a common issue for decades. Fabrication of nanofibrous membranes via the electrospinning technique for the sake of making the wound healing process more facile has caught a lot of interest. For this purpose, a polymeric scaffold of polylactic acid (PLA) was doped with nanoparticles with different concentrations of turmeric/hydroxyapatite/vivianite/graphene oxide. The obtained membrane was tested by XRD, SEM, FTIR, and XPS. The surface topography of the scaffold has experienced changes upon adding different concentrations of the nanoparticles. The contact angle was measured by water droplets. It accentuated change in CA starting from 43.9o for pure condition of PLA to 67.7o for PLA/turmeric/vivianite. The thermogravimetric analysis (TGA) test stated that the PLA scaffold features are thermally stable in relatively high-temperature conditions initiating from room temperature to about 300 °C, meeting the maximum loss in mass of about 5 %. The cell viability was carried out in prepared vitro for the sample which contains PLA/turmeric/vivianite/GO, it was elucidated that the IC50 was around 3060 μg/ml. [Display omitted]
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.128624