Modified Guo-Min decoction ameliorates PM2.5-induced lung injury by inhibition of PI3K-AKT and MAPK signaling pathways

Exposure to particles with an aerodynamic diameter of ≤2.5 μm (PM2.5) increased various lung diseases, which lack effective treatment. Massive evidence links PM2.5 to the development of allergic lung diseases like asthma. Modified Guo-Min Decoction (MGMD) is a traditional Chinese formula for allergi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytomedicine (Stuttgart) 2024-01, Vol.123, p.155211-155211, Article 155211
Hauptverfasser: Wang, Hongtao, Wang, Guishu, Meng, Yufeng, Liu, Yaqian, Yao, Xiaoqin, Feng, Cuiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exposure to particles with an aerodynamic diameter of ≤2.5 μm (PM2.5) increased various lung diseases, which lack effective treatment. Massive evidence links PM2.5 to the development of allergic lung diseases like asthma. Modified Guo-Min Decoction (MGMD) is a traditional Chinese formula for allergic diseases. However, whether MGMD could improve PM2.5-induced lung injury and the underlying mechanism remain unclear and we aimed to explore. Male Wistar rats (200-220 g) were intratracheally instilled of PM2.5 suspension daily for 4 weeks to establish PM2.5-induced lung injury model. MGMD (2.1 g/kg) treatment by gavage was started 1 week before, at the same time or 1 week after the instillation of PM2.5 suspension, namely the pre-, sync- or post-administration groups. HE and Masson staining were used to observe morphological changes. Immunohistochemistry staining was used to detect macrophage and neutrophil infiltration. The levels of inflammatory cytokines in the bronchoalveolar lavage fluid were detected by ELISA. The main components of MGMD were detected by UHPLC-LTQ-Orbitrap MS . Network pharmacology was used to identify the key targets mediating the effect of MGMD in treating PM2.5-induced lung injury. Changes in the expression of target proteins were examined by western blot. In-vitro experiments were carried out in Beas2b cells to evaluate the protective effect and mechanism of MGMD against PM2.5 induced injury. Exposure to PM2.5 suspension resulted in disarrangement of tracheal epithelium, neutrophil and M1 macrophage infiltration and collagen deposition, and significantly increased IgE, IL-1β and IL-17 secretion and NLRP3 expression, which were inhibited by MDMD treatment and pre-MGMD treatment showed the best effect. By UHPLC-LTQ-Orbitrap MS , 46 main compounds were identified in MGMD. Using network pharmacology approach, we found MGMD attenuate PM2.5-induced lung damage by targeting 216 genes, and PPI network, GO and KEGG analysis all indicated that PI3K-AKT and MAPK pathways were important. Western blot showed that PM2.5 suspension exposure increased PI3K, AKT, ERK and JNK phosphorylation, which were reversed by MGMD intervention significantly. In vitro, the viability of Beas2b cells was significantly decreased after PM2.5 suspension exposure, and was obviously upregulated after MGMD-containing serum or LY294002 treatment. The present study demonstrated that MGMD could improve PM2.5-induced lung injury through reducing inflammation and pulmonary fi
ISSN:0944-7113
1618-095X
DOI:10.1016/j.phymed.2023.155211