CFD-DEM Fluidized Bed Drying Study Using a Coarse-Graining Technique
Fluidized beds are commonly applied to industrial drying applications. Modeling using the computational fluid dynamics-discrete element method (CFD-DEM) can be employed to increase the fundamental understanding of solids drying. A large drawback of CFD-DEM is the computational requirements, leading...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2023-12, Vol.62 (48), p.20911-20920 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fluidized beds are commonly applied to industrial drying applications. Modeling using the computational fluid dynamics-discrete element method (CFD-DEM) can be employed to increase the fundamental understanding of solids drying. A large drawback of CFD-DEM is the computational requirements, leading to a limitation regarding the system size. Coarse-grained CFD-DEM is an approach to reduce computational costs, allowing one to simulate larger fluidized beds. In this article, coarse-graining CFD-DEM scaling laws are used for fluidized bed solids drying. Three superficial gas velocities are investigated. The particle temperature and density are accurately described. Besides, the Sherwood number is well captured by the coarse-graining simulations. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.3c02960 |