Resistive Pulse Sensing on a Capillary-Assisted Microfluidic Platform for On-Site Single-Particle Analyses

Capillary-assisted flow is valuable for utilizing microfluidics-based electrical sensing platforms at on-site locations by simplifying microfluidic operations and system construction; however, incorporating capillary-assisted flow in platforms requires easy microfluidic modification and stability ov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-12, Vol.95 (50), p.18335-18343
Hauptverfasser: Shimada, Taisuke, Fujino, Keiko, Yasui, Takao, Kaji, Noritada, Ueda, Yasuyuki, Fujii, Kentaro, Yukawa, Hiroshi, Baba, Yoshinobu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Capillary-assisted flow is valuable for utilizing microfluidics-based electrical sensing platforms at on-site locations by simplifying microfluidic operations and system construction; however, incorporating capillary-assisted flow in platforms requires easy microfluidic modification and stability over time for capillary-assisted flow generation and sensing performance. Herein, we report a capillary-assisted microfluidics-based electrical sensing platform using a one-step modification of polydimethylsiloxane (PDMS) with polyethylene glycol (PEG). As a model of electrical sensing platforms, this work focused on resistive pulse sensing (RPS) using a micropore in a microfluidic chip for label-free electrical detection of single analytes, and filling the micropore with an electrolyte is the first step to perform this RPS. The PEG–PDMS surfaces remained hydrophilic after ambient storage for 30 d and assisted in generating an electrolyte flow for filling the micropore with the electrolyte. We demonstrated the successful detection and size analysis of micrometer particles and bacterial cells based on RPS using the microfluidic chip stored in a dry state for 30 d. Combining this capillary-assisted microfluidic platform with a portable RPS system makes on-site detection and analysis of single pathogens possible.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.3c02539