Understanding the Activity Trends in Electrocatalytic Nitrate Reduction to Ammonia on Cu Catalysts

Cu-based catalysts possess great potential in the electrocatalytic nitrate (NO3 –) reduction reaction for ammonia (NH3) synthesis. However, the low atomic economy limits their further application. Here we report a Cu single-atom (SA) incorporated in nitrogen-doped carbon (Cu SA/NC) with high atomic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-12, Vol.23 (24), p.11899-11906
Hauptverfasser: Yin, Haibo, Dong, Feng, Wang, Yunlong, Su, Haiwei, Li, Xiansheng, Peng, Yue, Duan, Haohong, Li, Junhua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cu-based catalysts possess great potential in the electrocatalytic nitrate (NO3 –) reduction reaction for ammonia (NH3) synthesis. However, the low atomic economy limits their further application. Here we report a Cu single-atom (SA) incorporated in nitrogen-doped carbon (Cu SA/NC) with high atomic economy, which exhibits superior NH3 Faradaic efficiency (FE) of 100% along with an impressive NH3 yield rate of 7480 μg h–1 mgcat. –1. As counterparts, Cus+n/NC, with mixed SA and nanoparticles (NPs), shows decreasing NH3 FE with decreasing SA content, but the production of N2 and N2O increases gradually, which reaches the maximum on pure Cu NPs. In situ characterizations and theoretical calculations reveal that a higher NH3 FE of Cu SA/NC is ascribed to a lower free energy of the rate-limiting step (HNO* → N*) and effective inhibition for the N-N coupled process. This work provides the intuitive activity trends of Cu-based catalysts, opening an avenue for subsequent catalysts design.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c03962