Broadband multi-wavelength Brillouin-Raman fiber laser with frequency switching

We purpose and demonstrate the switchable multi-wavelength Brillouin-Raman fiber laser (MBRFL) through a bi-directional Raman pumping scheme. The laser structure is arranged in a linear cavity by including a physical mirror at one side of the cavity. The switching operation for MBRFL with single- an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2023-12, Vol.31 (25), p.42347-42357
Hauptverfasser: Mamdoohi, G, Soltanian, M R K, Zhang, Z, Teymouri, A, Yari, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We purpose and demonstrate the switchable multi-wavelength Brillouin-Raman fiber laser (MBRFL) through a bi-directional Raman pumping scheme. The laser structure is arranged in a linear cavity by including a physical mirror at one side of the cavity. The switching operation for MBRFL with single- and double-wavelength spacing is implemented by optimizing the Raman power distribution through a variable optical coupler. This effect on feedback power of the physical mirror provides the difference between odd- and even-order Stoke lines' maximum power on different sides of the cavity with 10 GHz and 20 GHz spacing. A 90/10 coupler is found to be the optimal. Up to 460 flat-amplitude lines within only a 0.5-dB flatness range, average -5 dBm Stokes peak power (SPP), 10 GHz frequency spacing, and an average optical signal-to-noise ratio (OSNR) of 26 dB are observed. All the counted laser lines are spread across a 37 nm bandwidth. Simultaneously, 170 Stoke lines with overall -2 dBm SPP, 28 dB OSNR, and 20 GHz frequency spacing are attained on other side of the cavity. These are achieved when the Raman pump power is set only at 900 mW. To date, this is the simplest cavity design with the flattest spectrum and highest output power for both wavelength spacing and excellent OSNR achieved in multi-wavelength fiber lasers that incorporate a single low-power Raman pump unit.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.504151