Synergistic enhancement of chemisorption and catalytic conversion in lithium-sulfur batteries via Co3Fe7/Co5.47N separator mediator
Lithium-sulfur batteries (LSBs) show considerable potential in next-generation high performance batteries, but the heavy shuttle effect and sluggish redox kinetics of polysulfide hinder their further applications. In this paper, to address these shortcomings of LSBs, Co3Fe7/Co5.47N heterostructure w...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-03, Vol.657, p.757-766 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium-sulfur batteries (LSBs) show considerable potential in next-generation high performance batteries, but the heavy shuttle effect and sluggish redox kinetics of polysulfide hinder their further applications. In this paper, to address these shortcomings of LSBs, Co3Fe7/Co5.47N heterostructure were prepared and constructed from their Fe-Co Prussian blue analogue precursors under the condition of high temperature pyrolysis. The obtained Co3Fe7/Co5.47N display excellent immobilization-diffusion-conversion performance for polysulfides by synergistic effect in successfully hindering the shuttle effect of polysulfides. When the Co3Fe7/Co5.47N heterostructure were applied to modify the commercial polypropylene (PP) separator, the batteries displayed fantastic rate capacity and cycling stability. Specifically, the Co3Fe7/Co5.47N-PP batteries exhibit an extremely satisfactory initial specific capacity of 1430 m Ah/g at 0.5C, wonderful rate capacity of around 780 m Ah/g at 3C and superior per cycle decaying rate of 0.08 % for 500 cycles at 0.5C. When the current density reaches to 2C, the batteries still exhibit 501 m Ah/g after 900 cycles with 0.015 % per cycle decay rate. Besides, even in the high loading of sulfur (3.0 mg cm-2) at 0.5C, the superior cycling stability (0.075 % per cycle decay rate after 200 cycles) and high specific capacity (741 mAh/g after 200 cycles) can still be performed. Thus, this work provides a facile method for high-powered and long-life Li-S batteries with eminent entrapping-conversion processes of polysulfides. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.12.013 |