Exploring the supply and demand imbalance of carbon and carbon-related ecosystem services for dual‑carbon goal ecological management in the Huaihe River Ecological Economic Belt

The measurement of carbon and carbon-related ecosystem services (CCESs) has garnered considerable global attention, primarily due to dual‑carbon goals, which are crucial for the rational allocating of ecosystem service (ES) resources and the enhancement of terrestrial carbon sinks. This study develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-02, Vol.912, p.169169-169169, Article 169169
Hauptverfasser: Yang, Dehu, Zhu, Changming, Li, Jianguo, Li, Yating, Zhang, Xin, Yang, Cunjian, Chu, Shuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The measurement of carbon and carbon-related ecosystem services (CCESs) has garnered considerable global attention, primarily due to dual‑carbon goals, which are crucial for the rational allocating of ecosystem service (ES) resources and the enhancement of terrestrial carbon sinks. This study developed a novel research framework on CCESs to quantitatively measure carbon storage (CS), food production (FS), habitat quality (HQ), soil conservation (SC), and water yield (WY), and examined the spatiotemporal patterns of the supply-demand and trade-off/synergy processes related to CCESs in the Huaihe River Ecological Economic Belt (HREEB). The findings are as follows: (1) From 2000 to 2020, the supply-demand of the CCESs generally increased, except for carbon storage and food demand. Overall, the supply level of the CCESs exceeds the demand level, with a median ratio of supply and demand ratio (ESDR) of 1.13. (2) During the study period, the synergy relationship of the CCESs is mainly determined by the supply side of the CS-HQ and CS-SC, while on the demand side, it is determined by the CD- FD. And the ESDR of all C-related ecosystem services showed a significant synergy strengthening with CS in the HREEB. (3) Spatially, “high-low” spatial matching of the ESDR decreased, suggesting a gradual reduction in the spatial mismatch of CCESs. (4) We identified seven ecological functional zones and proposed corresponding strategies for promoting ecological management. Our research emphasized the spatiotemporal patterns of supply and demand imbalance in CCESs and the spatial optimization paths of trade-offs/synergies, providing valuable insights for achieving regional dual‑carbon goals. [Display omitted] •The CCESs measurement framework is constructed based on multi-source data.•Spatiotemporal matching pattern in the HREEB has been explored.•Synergy effects between the ESDR of the CCESs tend to significantly increase.•Spatial mismatch of the CCESs has declined gradually from 2000 to 2020.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.169169