Characterization of the Microbial Community Structures, Soil Chemical Properties, and Enzyme Activity of Stellera chamaejasme (Thymelaeaceae) and Its Associated Forages in Alpine Grassland of Northwestern China
The invasion of toxic weeds was detrimental to the growth of original vegetation and speed up the degraded grasslands. The purpose of this study was to explore the difference in microbial community, soil physicochemical properties, and enzyme activity in the rhizosphere of Stellera chamaejasme and i...
Gespeichert in:
Veröffentlicht in: | Current microbiology 2024-01, Vol.81 (1), p.39-39, Article 39 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invasion of toxic weeds was detrimental to the growth of original vegetation and speed up the degraded grasslands. The purpose of this study was to explore the difference in microbial community, soil physicochemical properties, and enzyme activity in the rhizosphere of
Stellera chamaejasme
and its associated forages (
Stipa purpurea
and
Polygonum viviparum
). The rhizosphere soil microbial communities of
S. chamaejasme
and its associated forages were determined by high-throughput sequencing technology, the physicochemical properties, and enzyme activities were also measured using soil chemical methods. We performed biological statistical analyses to explore the correlation of rhizosphere micro-ecological environment between the invading poisonous herb
S. chamaejasme
and its associated forages. The Ascomycota community in the rhizosphere soil of
S. chamaejasme
was significantly decreased when compared with its associated forages.
S. chamaejasme
and
S. purpurea
had a similar bacterial composition, while the rhizosphere of
P. viviparum
was associated with more Acidobacteria and Bacteroidetes. The RDA analysis showed
S. chamaejasme
had highly correlated with acid proteinase, invertase, polyphenol oxidase, cellulose, and neutral protease and
S. purpurea
had highly associated with N-acetyl-beta-D-glucosaminidase,
β
-D-Glucosidase, and the
P. viviparum
had highly associated with total phosphorus, total nitrogen, ammonium nitrogen, soil organic matter, pH, acid phosphatase, and catalase. Along with the invasion of
S. chamaejasme
, the microbial composition, soil physicochemical properties, and enzyme activity of the growing area changed considerably compared with the associated forages. Taken together, our results suggested that the composition and diversity of microbial communities associated with
S. chamaejasme
and its associated forages exhibited different patterns, and the rhizosphere soil microbial communities in different plants were regulated by different environmental factors in this alpine grassland ecosystem. |
---|---|
ISSN: | 0343-8651 1432-0991 |
DOI: | 10.1007/s00284-023-03554-z |