Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles
The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensio...
Gespeichert in:
Veröffentlicht in: | ACS sensors 2024-01, Vol.9 (1), p.139-148 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 139 |
container_title | ACS sensors |
container_volume | 9 |
creator | Ou, Yucheng Zhai, Liangyu Zhu, Gangqiang Zhang, Weibin Huang, Xiaoyang Akdim, Ouardia Zhu, Lujun Nie, Junli Rao, Fei Huang, Yu Shi, Xianjin Gao, Jianzhi Lu, Hongbin Hojamberdiev, Mirabbos |
description | The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2–3 nm). The strong interaction between Au and SnO2 via the Au–O–Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au–SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au–SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future. |
doi_str_mv | 10.1021/acssensors.3c01777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902947040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902947040</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-35c621c607deeceb13c4d2498a1c657a9b7979b8bea58a608f7617712113a7c83</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EolXpC7BAXrLJ4EsSx8vRUKDSQBelbCPHOZm48tjBl5F4FN4WT2e4rFidi_7_k875EXpNyYoSRt8pHSO46ENccU2oEOIZumRcyIq3sn7-T3-BrmN8JITQpmVNR16iC94R2dK2u0Q_13o2cDBuhz97CzpbFaotHMDieyhzMgfA7yEdO--wn_A3b1UyFvBd2ClnNN74_eKzGyNOc_B5N2OF71PwBbnxebFH9s00FcLR_mBTUGk2Dn9RzscZIEWs3IjX-WmzqJCMthBfoReTshGuz_UKPXy4-br5VG3vPt5u1ttK8Zqlije6ZVS3RIwAGgbKdT2yWnaqLBuh5CCkkEM3gGo61ZJuEm35FmWUciV0x6_Q2xN3Cf57hpj6vYkarFUOfI49k4TJWpCaFCk7SXXwMQaY-iWYvQo_ekr6Yyr931T6cyrF9ObMz8Mexj-W3xkUweokKOb-0efgyrn_I_4CHledqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902947040</pqid></control><display><type>article</type><title>Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles</title><source>American Chemical Society Journals</source><creator>Ou, Yucheng ; Zhai, Liangyu ; Zhu, Gangqiang ; Zhang, Weibin ; Huang, Xiaoyang ; Akdim, Ouardia ; Zhu, Lujun ; Nie, Junli ; Rao, Fei ; Huang, Yu ; Shi, Xianjin ; Gao, Jianzhi ; Lu, Hongbin ; Hojamberdiev, Mirabbos</creator><creatorcontrib>Ou, Yucheng ; Zhai, Liangyu ; Zhu, Gangqiang ; Zhang, Weibin ; Huang, Xiaoyang ; Akdim, Ouardia ; Zhu, Lujun ; Nie, Junli ; Rao, Fei ; Huang, Yu ; Shi, Xianjin ; Gao, Jianzhi ; Lu, Hongbin ; Hojamberdiev, Mirabbos</creatorcontrib><description>The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2–3 nm). The strong interaction between Au and SnO2 via the Au–O–Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au–SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au–SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.3c01777</identifier><identifier>PMID: 38096168</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sensors, 2024-01, Vol.9 (1), p.139-148</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-35c621c607deeceb13c4d2498a1c657a9b7979b8bea58a608f7617712113a7c83</citedby><cites>FETCH-LOGICAL-a342t-35c621c607deeceb13c4d2498a1c657a9b7979b8bea58a608f7617712113a7c83</cites><orcidid>0000-0001-5910-2106 ; 0000-0003-3915-7681 ; 0000-0002-7221-2075 ; 0000-0003-3334-4849 ; 0000-0001-5708-9446 ; 0000-0002-5233-2563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.3c01777$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.3c01777$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38096168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ou, Yucheng</creatorcontrib><creatorcontrib>Zhai, Liangyu</creatorcontrib><creatorcontrib>Zhu, Gangqiang</creatorcontrib><creatorcontrib>Zhang, Weibin</creatorcontrib><creatorcontrib>Huang, Xiaoyang</creatorcontrib><creatorcontrib>Akdim, Ouardia</creatorcontrib><creatorcontrib>Zhu, Lujun</creatorcontrib><creatorcontrib>Nie, Junli</creatorcontrib><creatorcontrib>Rao, Fei</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Shi, Xianjin</creatorcontrib><creatorcontrib>Gao, Jianzhi</creatorcontrib><creatorcontrib>Lu, Hongbin</creatorcontrib><creatorcontrib>Hojamberdiev, Mirabbos</creatorcontrib><title>Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2–3 nm). The strong interaction between Au and SnO2 via the Au–O–Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au–SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au–SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhi0EolXpC7BAXrLJ4EsSx8vRUKDSQBelbCPHOZm48tjBl5F4FN4WT2e4rFidi_7_k875EXpNyYoSRt8pHSO46ENccU2oEOIZumRcyIq3sn7-T3-BrmN8JITQpmVNR16iC94R2dK2u0Q_13o2cDBuhz97CzpbFaotHMDieyhzMgfA7yEdO--wn_A3b1UyFvBd2ClnNN74_eKzGyNOc_B5N2OF71PwBbnxebFH9s00FcLR_mBTUGk2Dn9RzscZIEWs3IjX-WmzqJCMthBfoReTshGuz_UKPXy4-br5VG3vPt5u1ttK8Zqlije6ZVS3RIwAGgbKdT2yWnaqLBuh5CCkkEM3gGo61ZJuEm35FmWUciV0x6_Q2xN3Cf57hpj6vYkarFUOfI49k4TJWpCaFCk7SXXwMQaY-iWYvQo_ekr6Yyr931T6cyrF9ObMz8Mexj-W3xkUweokKOb-0efgyrn_I_4CHledqg</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Ou, Yucheng</creator><creator>Zhai, Liangyu</creator><creator>Zhu, Gangqiang</creator><creator>Zhang, Weibin</creator><creator>Huang, Xiaoyang</creator><creator>Akdim, Ouardia</creator><creator>Zhu, Lujun</creator><creator>Nie, Junli</creator><creator>Rao, Fei</creator><creator>Huang, Yu</creator><creator>Shi, Xianjin</creator><creator>Gao, Jianzhi</creator><creator>Lu, Hongbin</creator><creator>Hojamberdiev, Mirabbos</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5910-2106</orcidid><orcidid>https://orcid.org/0000-0003-3915-7681</orcidid><orcidid>https://orcid.org/0000-0002-7221-2075</orcidid><orcidid>https://orcid.org/0000-0003-3334-4849</orcidid><orcidid>https://orcid.org/0000-0001-5708-9446</orcidid><orcidid>https://orcid.org/0000-0002-5233-2563</orcidid></search><sort><creationdate>20240126</creationdate><title>Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles</title><author>Ou, Yucheng ; Zhai, Liangyu ; Zhu, Gangqiang ; Zhang, Weibin ; Huang, Xiaoyang ; Akdim, Ouardia ; Zhu, Lujun ; Nie, Junli ; Rao, Fei ; Huang, Yu ; Shi, Xianjin ; Gao, Jianzhi ; Lu, Hongbin ; Hojamberdiev, Mirabbos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-35c621c607deeceb13c4d2498a1c657a9b7979b8bea58a608f7617712113a7c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Yucheng</creatorcontrib><creatorcontrib>Zhai, Liangyu</creatorcontrib><creatorcontrib>Zhu, Gangqiang</creatorcontrib><creatorcontrib>Zhang, Weibin</creatorcontrib><creatorcontrib>Huang, Xiaoyang</creatorcontrib><creatorcontrib>Akdim, Ouardia</creatorcontrib><creatorcontrib>Zhu, Lujun</creatorcontrib><creatorcontrib>Nie, Junli</creatorcontrib><creatorcontrib>Rao, Fei</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Shi, Xianjin</creatorcontrib><creatorcontrib>Gao, Jianzhi</creatorcontrib><creatorcontrib>Lu, Hongbin</creatorcontrib><creatorcontrib>Hojamberdiev, Mirabbos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Yucheng</au><au>Zhai, Liangyu</au><au>Zhu, Gangqiang</au><au>Zhang, Weibin</au><au>Huang, Xiaoyang</au><au>Akdim, Ouardia</au><au>Zhu, Lujun</au><au>Nie, Junli</au><au>Rao, Fei</au><au>Huang, Yu</au><au>Shi, Xianjin</au><au>Gao, Jianzhi</au><au>Lu, Hongbin</au><au>Hojamberdiev, Mirabbos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2024-01-26</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>139</spage><epage>148</epage><pages>139-148</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2–3 nm). The strong interaction between Au and SnO2 via the Au–O–Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au–SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au–SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38096168</pmid><doi>10.1021/acssensors.3c01777</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5910-2106</orcidid><orcidid>https://orcid.org/0000-0003-3915-7681</orcidid><orcidid>https://orcid.org/0000-0002-7221-2075</orcidid><orcidid>https://orcid.org/0000-0003-3334-4849</orcidid><orcidid>https://orcid.org/0000-0001-5708-9446</orcidid><orcidid>https://orcid.org/0000-0002-5233-2563</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3694 |
ispartof | ACS sensors, 2024-01, Vol.9 (1), p.139-148 |
issn | 2379-3694 2379-3694 |
language | eng |
recordid | cdi_proquest_miscellaneous_2902947040 |
source | American Chemical Society Journals |
title | Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20Molecular-Level%20Selective%20Detection%20of%20Volatile%20Organic%20Compounds%20through%20a%20Strong%20Coupling%20Effect%20of%20Ultrathin%20Nanosheets%20and%20Au%20Nanoparticles&rft.jtitle=ACS%20sensors&rft.au=Ou,%20Yucheng&rft.date=2024-01-26&rft.volume=9&rft.issue=1&rft.spage=139&rft.epage=148&rft.pages=139-148&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.3c01777&rft_dat=%3Cproquest_cross%3E2902947040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902947040&rft_id=info:pmid/38096168&rfr_iscdi=true |