Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles

The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2024-01, Vol.9 (1), p.139-148
Hauptverfasser: Ou, Yucheng, Zhai, Liangyu, Zhu, Gangqiang, Zhang, Weibin, Huang, Xiaoyang, Akdim, Ouardia, Zhu, Lujun, Nie, Junli, Rao, Fei, Huang, Yu, Shi, Xianjin, Gao, Jianzhi, Lu, Hongbin, Hojamberdiev, Mirabbos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 139
container_title ACS sensors
container_volume 9
creator Ou, Yucheng
Zhai, Liangyu
Zhu, Gangqiang
Zhang, Weibin
Huang, Xiaoyang
Akdim, Ouardia
Zhu, Lujun
Nie, Junli
Rao, Fei
Huang, Yu
Shi, Xianjin
Gao, Jianzhi
Lu, Hongbin
Hojamberdiev, Mirabbos
description The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2–3 nm). The strong interaction between Au and SnO2 via the Au–O–Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au–SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au–SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.
doi_str_mv 10.1021/acssensors.3c01777
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2902947040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902947040</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-35c621c607deeceb13c4d2498a1c657a9b7979b8bea58a608f7617712113a7c83</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi0EolXpC7BAXrLJ4EsSx8vRUKDSQBelbCPHOZm48tjBl5F4FN4WT2e4rFidi_7_k875EXpNyYoSRt8pHSO46ENccU2oEOIZumRcyIq3sn7-T3-BrmN8JITQpmVNR16iC94R2dK2u0Q_13o2cDBuhz97CzpbFaotHMDieyhzMgfA7yEdO--wn_A3b1UyFvBd2ClnNN74_eKzGyNOc_B5N2OF71PwBbnxebFH9s00FcLR_mBTUGk2Dn9RzscZIEWs3IjX-WmzqJCMthBfoReTshGuz_UKPXy4-br5VG3vPt5u1ttK8Zqlije6ZVS3RIwAGgbKdT2yWnaqLBuh5CCkkEM3gGo61ZJuEm35FmWUciV0x6_Q2xN3Cf57hpj6vYkarFUOfI49k4TJWpCaFCk7SXXwMQaY-iWYvQo_ekr6Yyr931T6cyrF9ObMz8Mexj-W3xkUweokKOb-0efgyrn_I_4CHledqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902947040</pqid></control><display><type>article</type><title>Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles</title><source>American Chemical Society Journals</source><creator>Ou, Yucheng ; Zhai, Liangyu ; Zhu, Gangqiang ; Zhang, Weibin ; Huang, Xiaoyang ; Akdim, Ouardia ; Zhu, Lujun ; Nie, Junli ; Rao, Fei ; Huang, Yu ; Shi, Xianjin ; Gao, Jianzhi ; Lu, Hongbin ; Hojamberdiev, Mirabbos</creator><creatorcontrib>Ou, Yucheng ; Zhai, Liangyu ; Zhu, Gangqiang ; Zhang, Weibin ; Huang, Xiaoyang ; Akdim, Ouardia ; Zhu, Lujun ; Nie, Junli ; Rao, Fei ; Huang, Yu ; Shi, Xianjin ; Gao, Jianzhi ; Lu, Hongbin ; Hojamberdiev, Mirabbos</creatorcontrib><description>The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2–3 nm). The strong interaction between Au and SnO2 via the Au–O–Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au–SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au–SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.3c01777</identifier><identifier>PMID: 38096168</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sensors, 2024-01, Vol.9 (1), p.139-148</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-35c621c607deeceb13c4d2498a1c657a9b7979b8bea58a608f7617712113a7c83</citedby><cites>FETCH-LOGICAL-a342t-35c621c607deeceb13c4d2498a1c657a9b7979b8bea58a608f7617712113a7c83</cites><orcidid>0000-0001-5910-2106 ; 0000-0003-3915-7681 ; 0000-0002-7221-2075 ; 0000-0003-3334-4849 ; 0000-0001-5708-9446 ; 0000-0002-5233-2563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.3c01777$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.3c01777$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38096168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ou, Yucheng</creatorcontrib><creatorcontrib>Zhai, Liangyu</creatorcontrib><creatorcontrib>Zhu, Gangqiang</creatorcontrib><creatorcontrib>Zhang, Weibin</creatorcontrib><creatorcontrib>Huang, Xiaoyang</creatorcontrib><creatorcontrib>Akdim, Ouardia</creatorcontrib><creatorcontrib>Zhu, Lujun</creatorcontrib><creatorcontrib>Nie, Junli</creatorcontrib><creatorcontrib>Rao, Fei</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Shi, Xianjin</creatorcontrib><creatorcontrib>Gao, Jianzhi</creatorcontrib><creatorcontrib>Lu, Hongbin</creatorcontrib><creatorcontrib>Hojamberdiev, Mirabbos</creatorcontrib><title>Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2–3 nm). The strong interaction between Au and SnO2 via the Au–O–Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au–SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au–SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhi0EolXpC7BAXrLJ4EsSx8vRUKDSQBelbCPHOZm48tjBl5F4FN4WT2e4rFidi_7_k875EXpNyYoSRt8pHSO46ENccU2oEOIZumRcyIq3sn7-T3-BrmN8JITQpmVNR16iC94R2dK2u0Q_13o2cDBuhz97CzpbFaotHMDieyhzMgfA7yEdO--wn_A3b1UyFvBd2ClnNN74_eKzGyNOc_B5N2OF71PwBbnxebFH9s00FcLR_mBTUGk2Dn9RzscZIEWs3IjX-WmzqJCMthBfoReTshGuz_UKPXy4-br5VG3vPt5u1ttK8Zqlije6ZVS3RIwAGgbKdT2yWnaqLBuh5CCkkEM3gGo61ZJuEm35FmWUciV0x6_Q2xN3Cf57hpj6vYkarFUOfI49k4TJWpCaFCk7SXXwMQaY-iWYvQo_ekr6Yyr931T6cyrF9ObMz8Mexj-W3xkUweokKOb-0efgyrn_I_4CHledqg</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Ou, Yucheng</creator><creator>Zhai, Liangyu</creator><creator>Zhu, Gangqiang</creator><creator>Zhang, Weibin</creator><creator>Huang, Xiaoyang</creator><creator>Akdim, Ouardia</creator><creator>Zhu, Lujun</creator><creator>Nie, Junli</creator><creator>Rao, Fei</creator><creator>Huang, Yu</creator><creator>Shi, Xianjin</creator><creator>Gao, Jianzhi</creator><creator>Lu, Hongbin</creator><creator>Hojamberdiev, Mirabbos</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5910-2106</orcidid><orcidid>https://orcid.org/0000-0003-3915-7681</orcidid><orcidid>https://orcid.org/0000-0002-7221-2075</orcidid><orcidid>https://orcid.org/0000-0003-3334-4849</orcidid><orcidid>https://orcid.org/0000-0001-5708-9446</orcidid><orcidid>https://orcid.org/0000-0002-5233-2563</orcidid></search><sort><creationdate>20240126</creationdate><title>Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles</title><author>Ou, Yucheng ; Zhai, Liangyu ; Zhu, Gangqiang ; Zhang, Weibin ; Huang, Xiaoyang ; Akdim, Ouardia ; Zhu, Lujun ; Nie, Junli ; Rao, Fei ; Huang, Yu ; Shi, Xianjin ; Gao, Jianzhi ; Lu, Hongbin ; Hojamberdiev, Mirabbos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-35c621c607deeceb13c4d2498a1c657a9b7979b8bea58a608f7617712113a7c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Yucheng</creatorcontrib><creatorcontrib>Zhai, Liangyu</creatorcontrib><creatorcontrib>Zhu, Gangqiang</creatorcontrib><creatorcontrib>Zhang, Weibin</creatorcontrib><creatorcontrib>Huang, Xiaoyang</creatorcontrib><creatorcontrib>Akdim, Ouardia</creatorcontrib><creatorcontrib>Zhu, Lujun</creatorcontrib><creatorcontrib>Nie, Junli</creatorcontrib><creatorcontrib>Rao, Fei</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Shi, Xianjin</creatorcontrib><creatorcontrib>Gao, Jianzhi</creatorcontrib><creatorcontrib>Lu, Hongbin</creatorcontrib><creatorcontrib>Hojamberdiev, Mirabbos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Yucheng</au><au>Zhai, Liangyu</au><au>Zhu, Gangqiang</au><au>Zhang, Weibin</au><au>Huang, Xiaoyang</au><au>Akdim, Ouardia</au><au>Zhu, Lujun</au><au>Nie, Junli</au><au>Rao, Fei</au><au>Huang, Yu</au><au>Shi, Xianjin</au><au>Gao, Jianzhi</au><au>Lu, Hongbin</au><au>Hojamberdiev, Mirabbos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2024-01-26</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>139</spage><epage>148</epage><pages>139-148</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2–3 nm). The strong interaction between Au and SnO2 via the Au–O–Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au–SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au–SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38096168</pmid><doi>10.1021/acssensors.3c01777</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5910-2106</orcidid><orcidid>https://orcid.org/0000-0003-3915-7681</orcidid><orcidid>https://orcid.org/0000-0002-7221-2075</orcidid><orcidid>https://orcid.org/0000-0003-3334-4849</orcidid><orcidid>https://orcid.org/0000-0001-5708-9446</orcidid><orcidid>https://orcid.org/0000-0002-5233-2563</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2024-01, Vol.9 (1), p.139-148
issn 2379-3694
2379-3694
language eng
recordid cdi_proquest_miscellaneous_2902947040
source American Chemical Society Journals
title Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20Molecular-Level%20Selective%20Detection%20of%20Volatile%20Organic%20Compounds%20through%20a%20Strong%20Coupling%20Effect%20of%20Ultrathin%20Nanosheets%20and%20Au%20Nanoparticles&rft.jtitle=ACS%20sensors&rft.au=Ou,%20Yucheng&rft.date=2024-01-26&rft.volume=9&rft.issue=1&rft.spage=139&rft.epage=148&rft.pages=139-148&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.3c01777&rft_dat=%3Cproquest_cross%3E2902947040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902947040&rft_id=info:pmid/38096168&rfr_iscdi=true