Achieving Molecular-Level Selective Detection of Volatile Organic Compounds through a Strong Coupling Effect of Ultrathin Nanosheets and Au Nanoparticles

The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2024-01, Vol.9 (1), p.139-148
Hauptverfasser: Ou, Yucheng, Zhai, Liangyu, Zhu, Gangqiang, Zhang, Weibin, Huang, Xiaoyang, Akdim, Ouardia, Zhu, Lujun, Nie, Junli, Rao, Fei, Huang, Yu, Shi, Xianjin, Gao, Jianzhi, Lu, Hongbin, Hojamberdiev, Mirabbos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high density of surface active sites, high efficiency of interfacial carrier transport, and molecular diffusion path determine the efficiency of the electrochemical sensors. The ultrathin structures have atomic-level thickness, carrier migration and heat diffusion are limited in the two-dimensional plane, resulting in excellent conductivity and high carrier concentration. A one-step chemical method is applied to synthesize defect-rich Au-SnO2 in an ultrathin nanosheet form (thickness of 2–3 nm). The strong interaction between Au and SnO2 via the Au–O–Sn bonding and the catalytic effect of Au can prolong the service life via decreasing the optimal operating temperature (55 °C) and promote the Au-SnO2 sensor to exclusively detect formaldehyde at the ppb level (300 ppb). The experimental findings along with theoretical study reveal that Au nanoparticles have a different effect on the competitive adsorption and chemical reaction over the surface of the Au–SnO2 with formaldehyde and other interfering VOC gases, such as methanol, ethanol, and acetone. This study provides mechanistic insights into the correlation between operating temperature and the performance of the Au–SnO2 chemiresistive sensor. This work allows the development of highly efficient and stable electrochemical sensors to detect VOC gases at room temperature in the future.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.3c01777