A glucagon-like peptide-1 receptor antagonist reduces the insulin response to a glycemic meal in ponies

Abstract High plasma concentrations of insulin can cause acute laminitis. Ponies and horses with insulin dysregulation (ID) exhibit marked hyperinsulinemia in response to dietary hydrolyzable carbohydrates. Glucagon-like peptide-1 (GLP-1), an incretin hormone released from the gastrointestinal tract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2023-01, Vol.101
Hauptverfasser: de Laat, Melody A, Fitzgerald, Danielle M, Harris, Patricia A, Bailey, Simon R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract High plasma concentrations of insulin can cause acute laminitis. Ponies and horses with insulin dysregulation (ID) exhibit marked hyperinsulinemia in response to dietary hydrolyzable carbohydrates. Glucagon-like peptide-1 (GLP-1), an incretin hormone released from the gastrointestinal tract, enhances insulin release, and is increased postprandially in ponies with ID. The aim of this study was to determine whether blocking the GLP-1 receptor reduces the insulin response to a high glycemic meal. Five adult ponies were adapted to a cereal meal and then given two feed challenges 24 h apart of a meal containing 3 g/kg BW micronized maize. Using a randomized cross-over design all ponies received both treatments, where one of the feeds was preceded by the IV administration of a GLP-1 receptor blocking peptide, Exendin-3 (9-39) amide (80 µg/kg), and the other feed by a sham treatment of peptide diluent only. Blood samples were taken before feeding and peptide administration, and then at 30-min intervals via a jugular catheter for 6 h for the measurement of insulin, glucose, and active GLP-1. The peptide and meal challenge caused no adverse effects, and the change in plasma glucose in response to the meal was not affected (P = 0.36) by treatment: peak concentration 9.24 ± 1.22 and 9.14 ± 1.08 mmol/L without and with the antagonist, respectively. Similarly, there was no effect (P = 0.35) on plasma active GLP-1 concentrations: peak concentration 14.3 ± 1.36 pM and 13.7 ± 1.97 pM without and with the antagonist, respectively. However, the antagonist caused a significant decrease in the area under the curve for insulin (P = 0.04), and weak evidence (P = 0.06) of a reduction in peak insulin concentration (456 ± 147 μIU/mL and 370 ± 146 μIU/mL without and with the antagonist, respectively). The lower overall insulin response to the maize meal after treatment with the antagonist demonstrates that blocking the GLP-1 receptor partially reduced insulin production in response to a high starch, high glycemic index, diet. Using a different methodological approach to published studies, this study also confirmed that GLP-1 does contribute to the excessive insulin production in ponies with ID. Postprandial hyperinsulinemia can be reduced using an antagonist of the glucagon-like peptide-1 receptor in ponies, suggesting that elevated levels of this incretin might be involved in the increased risk of laminitis. Lay Summary Horses and ponies are prone to suffer from laminitis
ISSN:0021-8812
1525-3163
DOI:10.1093/jas/skad389