Copper-Bridge-Enhanced p‑Band Center Modulation of Carbon–Bismuth Heterojunction for CO2 Electroreduction

Bismuth-based catalysts have advanced CO2 electroreduction to formic acid, but their intrinsic electronic structure remains a key obstacle to achieving a high catalytic performance. Herein, a copper bridge strategy is proposed to enhance electronic modulation effects in bismuth/carbon composites. De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2023-12, Vol.23 (23), p.10946-10954
Hauptverfasser: Wang, Xiaoshan, Zhou, Minjun, Wang, Mingwang, Wang, Wenhang, Yang, Zhongxue, Zhang, Yunlong, Li, Qiang, Ning, Hui, Wu, Mingbo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bismuth-based catalysts have advanced CO2 electroreduction to formic acid, but their intrinsic electronic structure remains a key obstacle to achieving a high catalytic performance. Herein, a copper bridge strategy is proposed to enhance electronic modulation effects in bismuth/carbon composites. Density functional theory calculations prove the novel p–d–p hybrid orbitals on the carbon–copper–bismuth heterojunction structure (Bi-Cu/HMCS) could stabilize the HCOO* intermediate and lower the thermodynamic barrier from CO2 to formic acid. With the rapid electron-supplying effect of “copper bridge”, the faradaic efficiency of formate reaches 100% (±2%) at a low overpotential of 500 mV and remains above 90% within a wide potential range. Using a solid-state electrolyte device, pure 0.6 M HCOOH is produced at a stable current density of 100 mA cm–2 within 7.5 h, boasting an impressive energy efficiency of 53.8%. This work offers a new strategy for optimizing electronic structure of metal/carbon composite electrocatalysts.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.3c03173