Wide Temperature All-Solid-State Ti3 C2 Tx Quantum Dots/L-Ti3 C2 Tx Fiber Supercapacitor with High Capacitance and Excellent Flexibility
Ti3 C2 Tx Quantum dots (QDs)/L-Ti3 C2 Tx fiber electrode (Q3 M7 ) with high capacitance and excellent flexibility is prepared by a wet spinning method. The assembled units Ti3 C2 Tx nanosheets (NSs) with large size (denoted as L-Ti3 C2 Tx ) is obtained by natural sedimentation screen raw Ti3 AlC2 ,...
Gespeichert in:
Veröffentlicht in: | Advanced science 2024-02, Vol.11 (7), p.e2305991-e2305991 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ti3 C2 Tx Quantum dots (QDs)/L-Ti3 C2 Tx fiber electrode (Q3 M7 ) with high capacitance and excellent flexibility is prepared by a wet spinning method. The assembled units Ti3 C2 Tx nanosheets (NSs) with large size (denoted as L-Ti3 C2 Tx ) is obtained by natural sedimentation screen raw Ti3 AlC2 , etching, and mechanical delamination. The pillar agent Ti3 C2 Tx QDs is fabricated by an ultrasound method. Q3 M7 fiber electrode gave a specific capacitance of 1560 F cm-3 , with a capacity retention rate of 79% at 20 A cm-3 , and excellent mechanical strength of 130 Mpa. A wide temperature all-solid-state the delaminated montmorillonite (F-MMT)/Polyvinyl alcohol (PVA) dimethyl sulfoxide (DMSO) flexible hydrogel (DHGE) (F-MMT/PVA DHGE) Q3 M7 fiber supercapacitor is assembled by using Q3 M7 fiber as electrodes and F-MMT/PVA DHGE as electrolyte and separator. It showed a volume specific capacitance of 413 F cm-3 at 0.5 A cm-3 , a capacity retention of 97% after 10 000 cycles, an energy density of 36.7 mWh cm-3 at a power density of 311 mW cm-3 , and impressive capacitance and flexibility over a wide temperature range of -40 to 60 °C. This work provides an effective strategy for designing and assembling wide temperature all-solid-state fiber supercapacitors with optimal balance of capacitive performance and flexibility. |
---|---|
ISSN: | 2198-3844 |
DOI: | 10.1002/advs.202305991 |