Long term peripheral AAV9-SMN gene therapy promotes survival in a mouse model of spinal muscular atrophy
Abstract Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by motor neuron loss and skeletal muscle atrophy. SMA is caused by the loss of the SMN1 gene and low SMN protein levels. Current SMA therapies work by increasing SMN protein in the body. Although SMA...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2024-02, Vol.33 (6), p.510-519 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by motor neuron loss and skeletal muscle atrophy. SMA is caused by the loss of the SMN1 gene and low SMN protein levels. Current SMA therapies work by increasing SMN protein in the body. Although SMA is regarded as a motor neuron disorder, growing evidence shows that several peripheral organs contribute to SMA pathology. A gene therapy treatment, onasemnogene abeparvovec, is being explored in clinical trials via both systemic and central nervous system (CNS) specific delivery, but the ideal route of delivery as well as the long-term effectiveness is unclear. To investigate the impact of gene therapy long term, we assessed SMA mice at 6 months after treatment of either intravenous (IV) or intracerebroventricular (ICV) delivery of scAAV9-cba-SMN. Interestingly, we observed that SMN protein levels were restored in the peripheral tissues but not in the spinal cord at 6 months of age. However, ICV injections provided better motor neuron and motor function protection than IV injection, while IV-injected mice demonstrated better protection of neuromuscular junctions and muscle fiber size. Surprisingly, both delivery routes resulted in an equal rescue on survival, weight, and liver and pancreatic defects. These results demonstrate that continued peripheral AAV9-SMN gene therapy is beneficial for disease improvement even in the absence of SMN restoration in the spinal cord.
Graphical Abstract
Graphical Abstract |
---|---|
ISSN: | 0964-6906 1460-2083 1460-2083 |
DOI: | 10.1093/hmg/ddad202 |