Heterogeneous Catalysis in Production and Utilization of Formic Acid for Renewable Energy
As the cleanest energy source, hydrogen has been followed with interest by researchers around the world. However, due to the internal low density of hydrogen, it cannot be stored and used efficiently which limits the hydrogen application on a huge scale. Chemical hydrogen storage is considered as a...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-05, Vol.20 (18), p.e2305405-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the cleanest energy source, hydrogen has been followed with interest by researchers around the world. However, due to the internal low density of hydrogen, it cannot be stored and used efficiently which limits the hydrogen application on a huge scale. Chemical hydrogen storage is considered as a useful method for efficient handling and storage. Due to its excellent safety, formic acid stands out. It is worth noting that the matter and energy conversion is established based on formic acid, which is not referred to in the previous documentation. In this review, the latest development of research on heterogeneous catalysis via production and application of formic acid for energy application is reported. The matter and energy conversion based on formic acid are both discussed systematically. More importantly, with formic acid as the node, biomass energy shows potential to be in a dominant position in the energy conversion process. In addition, the catalytic mechanism is also mentioned. This review can provide the current state in this field and the new inspirations for developing superior catalytic systems.
This review concentrates on the matter and energy conversion between carbon dioxide and formic acid. The production and utilization of formic acid, the catalytic mechanism, and the challenge and future prospects are comprehensively summarized. The development of hydrogen economy and environmental protection will be realized simultaneously. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202305405 |