Potential Load Reduction Using Airfoils with Variable Trailing Edge Geometry
This paper presents an investigation of the potential for reduction of fluctuating loads on wind turbine blades with the use of flaplike deflectable trailing edges. More specifically, the aeroelastic response of an elastically mounted airfoil section with a deflectable trailing edge is investigated....
Gespeichert in:
Veröffentlicht in: | Journal of solar energy engineering 2005-11, Vol.127 (4), p.503-516 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an investigation of the potential for reduction of fluctuating loads on wind turbine blades with the use of flaplike deflectable trailing edges. More specifically, the aeroelastic response of an elastically mounted airfoil section with a deflectable trailing edge is investigated. This is done by coupling a model for the aerodynamic forces on a deforming airfoil with a linear spring/damper model for the elastic deformation of a rigid airfoil to which the forces associated with the deflection of the trailing edge are added. The analysis showed that when the airfoil experienced a wind step from 10to12m∕s the standard deviation of the normal force could be reduced by up to 85% when the flap was controlled by the reading of the airfoil flapwise position and velocity, while reductions of up to 95% could be obtained when the flap was controlled by the reading of the angle of attack. When the airfoil experienced a turbulent wind field, the standard deviation of the normal force could be reduced by 81% for control based on measured angle of attack. The maximum reduction using a combination of flapwise position and velocity was 75%. The maximum deflection of the trailing edge geometry was, in all the considered cases, small enough to justify the use of a potential flow code for calculation of the aerodynamic forces. Calculations showed that the effect of a time lag in the actuators and sensors may drastically reduce the efficiency of the control algorithm. Likewise, the effect of a low maximum actuation velocity reduces the efficiency of the control algorithm. The analysis of the two-dimensional (2D) aeroservoelastic system shown in this paper indicates that the potential of using trailing edge flaps for reduction of fluctuating loads is significant. |
---|---|
ISSN: | 0199-6231 1528-8986 |
DOI: | 10.1115/1.2037094 |