Rb–Sr, Sm–Nd and Ar–Ar isotopic systematics of Martian dunite Chassigny
Isotopic analysis of the Martian meteorite Chassigny yields a Rb–Sr age of 1406 ± 14 Ma with an initial 87Sr/ 86Sr ratio of 0.702251 ± 0.000034, a Sm–Nd age of 1386 ± 28 Ma with an initial ε 143Nd-value of + 16.9 ± 0.3 and an 39Ar– 40Ar age of 1360 + 40 − 20 Ma. The concordance of these ages and th...
Gespeichert in:
Veröffentlicht in: | Earth and planetary science letters 2006-06, Vol.246 (1), p.90-101 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Isotopic analysis of the Martian meteorite Chassigny yields a Rb–Sr age of 1406
±
14 Ma with an initial
87Sr/
86Sr ratio of 0.702251
±
0.000034, a Sm–Nd age of 1386
±
28 Ma with an initial
ε
143Nd-value of +
16.9
±
0.3 and an
39Ar–
40Ar age of 1360
+
40
−
20
Ma. The concordance of these ages and the Rb–Sr and Sm–Nd initial isotopic signatures suggest that Chassigny crystallized from low Rb/Sr, light rare earth element depleted source materials ∼
1390 Ma ago. The ages and
ε
143Nd-values of Chassigny and the nakhlites Governador Valadares and Lafayette overlap, suggesting that they could have come from very similar mantle sources. Nakhla, Northwest Africa 998 and Yamato 000593 appear to be from similar but distinct sources. Chassigny and all nakhlites so far studied have undergone similar evolution histories. That is, chassignites/nakhlites were derived from a region where volcanism lasted at least 50 Ma and crystallized from different lava flows or subsurface sills. They probably were launched from Mars by a single impact event. The trapped Martian atmospheric
40Ar/
36Ar ratios in Chassigny, nakhlites and shergottite impact glass are similar and possibly indicate minimal change in this ratio over the past ≥
600 Ma. |
---|---|
ISSN: | 0012-821X 1385-013X |
DOI: | 10.1016/j.epsl.2006.03.044 |